A Novel Approach of Peer to Peer Energy Sharing in DC Microgrid with Optimal Distribution Losses

The minimization of distribution losses is one of the main necessities in the community based DC microgird (MG) with energy sharing between different DERs with surplus energy and/or with load diversity. Energy sharing can take place within a community MG or with other nearby community MGs. Distribution losses are normally calculated based on the distance (or distribution conductor length). However, they can also be dependant on voltage difference between sharing nodes, amount of energy sharing, and conductor size, etc. Therefore, peer-to-peer (P2P) energy sharing can't be optimally managed with only distance-based decision techniques, and must be decided based on appropriate analysis of distribution losses in an optimal power flow framework. In this paper, we proposed a nonlinear P2P energy sharing framework to ensure optimal power flow with minimal distribution losses and compare our proposed framework with nearby energy sharing model. We present the detailed analysis of distribution losses in a DC MG with several distributed generators (DG) and energy storage systems (ESSs) at distributed locations. The simulation results validate the proposed optimal P2P sharing method in reducing distribution losses upto 60 % and voltage profile of each prosumer remains in the stable limit of operation.