Developing new portfolio strategies by aggregation

We propose a method to combine N portfolio strategies by optimizing a given utility function $$U(\cdot )$$U(·). The method does not rely on any distributional assumption, could be easily extended to different combining functions and does not require any closed-form solution for the portfolio strategies to be combined. By focusing on three utility functions and a pool of five portfolio strategies, empirical analyses on real-world data show that the new method allows us to build combinations that better exploit the strengths of the different portfolio strategies during different market periods, thereby adapting to the data at hand and often outperforming state-of-art benchmarks.

[1]  Olivier Ledoit,et al.  A well-conditioned estimator for large-dimensional covariance matrices , 2004 .

[2]  Philippe Jorion Bayes-Stein Estimation for Portfolio Analysis , 1986, Journal of Financial and Quantitative Analysis.

[3]  R. Cont Empirical properties of asset returns: stylized facts and statistical issues , 2001 .

[4]  Olivier Ledoit,et al.  Robust Performance Hypothesis Testing with the Sharpe Ratio , 2007 .

[5]  Edward S. O'Neal How Many Mutual Funds Constitute a Diversified Mutual Fund Portfolio , 1997 .

[6]  J. Mossin EQUILIBRIUM IN A CAPITAL ASSET MARKET , 1966 .

[7]  M. Barton Waring,et al.  Optimizing Manager Structure and Budgeting Manager Risk , 2000 .

[8]  H. Levy,et al.  Markowitz Versus the Talmudic Portfolio Diversification Strategies , 2009, The Journal of Portfolio Management.

[9]  Bin Li,et al.  OLPS: A Toolbox for On-Line Portfolio Selection , 2016, J. Mach. Learn. Res..

[10]  Salima Benbernou,et al.  A survey on service quality description , 2013, CSUR.

[11]  Edward S. O'Neal,et al.  Do You Need More than One Manager for a Given Equity Style? , 1999 .

[12]  Victor DeMiguel,et al.  Optimal Versus Naive Diversification: How Inefficient is the 1/N Portfolio Strategy? , 2009 .

[13]  Joseph P. Romano,et al.  The stationary bootstrap , 1994 .

[14]  Yuhong Yang Adaptive Regression by Mixing , 2001 .

[15]  Guofu Zhou,et al.  Markowitz meets Talmud: A combination of sophisticated and naive diversification strategies ☆ , 2011 .

[16]  W. Sharpe CAPITAL ASSET PRICES: A THEORY OF MARKET EQUILIBRIUM UNDER CONDITIONS OF RISK* , 1964 .

[17]  Steven C. H. Hoi,et al.  Online portfolio selection: A survey , 2012, CSUR.

[18]  W. Ziemba,et al.  The Effect of Errors in Means, Variances, and Covariances on Optimal Portfolio Choice , 1993 .

[19]  S. Lahiri Resampling Methods for Dependent Data , 2003 .

[20]  Yuhong Yang Aggregating regression procedures to improve performance , 2004 .

[21]  Mark Broadie,et al.  Computing efficient frontiers using estimated parameters , 1993, Ann. Oper. Res..

[22]  Thierry Roncalli,et al.  Understanding the Impact of Weights Constraints in Portfolio Theory , 2011 .

[23]  Fabrizio Leisen,et al.  A Bootstrap Likelihood Approach to Bayesian Computation , 2015, 1510.07287.

[24]  Raman Uppal,et al.  Stock Return Serial Dependence and Out-of-Sample Portfolio Performance , 2013 .

[25]  Yuhong Yang Combining Different Procedures for Adaptive Regression , 2000, Journal of Multivariate Analysis.

[26]  R. Jagannathan,et al.  Risk Reduction in Large Portfolios: Why Imposing the Wrong Constraints Helps , 2002 .

[27]  Peter A. Frost,et al.  An Empirical Bayes Approach to Efficient Portfolio Selection , 1986, Journal of Financial and Quantitative Analysis.

[28]  Peng Chen,et al.  Choosing Managers and Funds , 2000 .

[29]  J. Lintner THE VALUATION OF RISK ASSETS AND THE SELECTION OF RISKY INVESTMENTS IN STOCK PORTFOLIOS AND CAPITAL BUDGETS , 1965 .

[30]  Peter Schanbacher,et al.  Averaging Across Asset Allocation Models , 2015 .

[31]  Neil D. Pearson,et al.  Consumption and Portfolio Policies With Incomplete Markets and Short‐Sale Constraints: the Finite‐Dimensional Case , 1991 .

[32]  Raymond Kan,et al.  Optimal Portfolio Choice with Parameter Uncertainty , 2007, Journal of Financial and Quantitative Analysis.