Automatic HCC Detection Using Convolutional Network with Multi-Magnification Input Images

Liver cancer postoperative pathologic examination of stained tissues is an important step in identifying prognostic factors for follow-up care. Traditionally, liver cancer detection would be performed by pathologists with observing the entire biological tissue, resulting in heavy work loading and potential misjudgment. Accordingly, the studies of the automatic pathological examination have been popular for a long period of time. Most approaches of the existing cancer detection, however, only extract cell level information based on single-scale high-magnification patch. In liver tissues, common cell change phenomena such as apoptosis, necrosis, and steatosis are similar in tumor and benign. Hence, the detection may fail when the patch only covered the changed cells area that cannot provide enough neighboring cell structure information. To conquer this problem, the convolutional network architecture with multi-magnification input can provide not only the cell level information by referencing high-magnification patches, but also the cell structure information by referencing low-magnification patches. The detection algorithm consists of two main structures: 1) extraction of cell level and cell structure level feature maps from high-magnification and low-magnification images respectively by separate general convolutional networks, and 2) integration of multi-magnification features by fully connected network. In this paper, VGG16 and Inception V4 were applied as the based convolutional network for liver tumor detection task. The experimental results showed that VGG16 based multi-magnification input convolutional network achieved 91% mIOU on HCC tumor detection task. In addition, with comparison between single-scale CNN (SSCN) and multi-scale CNN (MSCN) approaches, the MSCN demonstrated that the multi-scale patches could provide better performance on HCC classification task.

[1]  Bai Ying Lei,et al.  Accurate Segmentation of Cervical Cytoplasm and Nuclei Based on Multiscale Convolutional Network and Graph Partitioning , 2015, IEEE Transactions on Biomedical Engineering.

[2]  Ashutosh Kumar Singh,et al.  Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015 , 2016, Lancet.

[3]  Fang Zhang,et al.  Deep convolutional activation features for large scale Brain Tumor histopathology image classification and segmentation , 2015, 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[4]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[5]  Hao Chen,et al.  Mitosis Detection in Breast Cancer Histology Images via Deep Cascaded Networks , 2016, AAAI.

[6]  Anant Madabhushi,et al.  Accurate and reproducible invasive breast cancer detection in whole-slide images: A Deep Learning approach for quantifying tumor extent , 2017, Scientific Reports.

[7]  Kunio Doi,et al.  Computer-aided diagnosis in medical imaging: Historical review, current status and future potential , 2007, Comput. Medical Imaging Graph..

[8]  Nitish Srivastava,et al.  Dropout: a simple way to prevent neural networks from overfitting , 2014, J. Mach. Learn. Res..

[9]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[10]  Joel H. Saltz,et al.  Patch-Based Convolutional Neural Network for Whole Slide Tissue Image Classification , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[11]  Yoshua Bengio,et al.  Practical Recommendations for Gradient-Based Training of Deep Architectures , 2012, Neural Networks: Tricks of the Trade.

[12]  Bahram Parvin,et al.  Classification of Histology Sections via Multispectral Convolutional Sparse Coding , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[13]  Harris Drucker,et al.  Comparison of learning algorithms for handwritten digit recognition , 1995 .

[14]  Geoffrey E. Hinton,et al.  Rectified Linear Units Improve Restricted Boltzmann Machines , 2010, ICML.

[15]  Yoram Singer,et al.  Adaptive Subgradient Methods for Online Learning and Stochastic Optimization , 2011, J. Mach. Learn. Res..

[16]  Sergey Ioffe,et al.  Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift , 2015, ICML.

[17]  Dumitru Erhan,et al.  Going deeper with convolutions , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).