Randomized SVD Methods in Hyperspectral Imaging
暂无分享,去创建一个
Qiang Zhang | Jian Zhang | Jennifer B. Erway | Xiaofei Hu | Robert J. Plemmons | R. Plemmons | Xiaofei Hu | Qiang Zhang | Jian Zhang
[1] Ronald G. Resmini,et al. Target detection in a forest environment using spectral imagery , 1997, Optics & Photonics.
[2] Andrew Meigs,et al. Ultraspectral imaging: A new contribution to global virtual presence , 2008, IEEE Aerospace and Electronic Systems Magazine.
[3] Gene H. Golub,et al. Matrix computations (3rd ed.) , 1996 .
[4] Paul E. Lewis,et al. MODTRAN 5: a reformulated atmospheric band model with auxiliary species and practical multiple scattering options: update , 2005 .
[5] Paul Geladi,et al. Comprar Techniques and Applications of Hyperspectral Image Analysis | Paul Geladi | 9780470010860 | Wiley , 2007 .
[6] Philipp Birken,et al. Numerical Linear Algebra , 2011, Encyclopedia of Parallel Computing.
[7] Guillermo Sapiro,et al. Learning Discriminative Sparse Representations for Modeling, Source Separation, and Mapping of Hyperspectral Imagery , 2011, IEEE Transactions on Geoscience and Remote Sensing.
[8] R. Sahoo,et al. Hyperspectral Remote Sensing , 2013, Encyclopedia of Mathematical Geosciences.
[9] Qiang Zhang,et al. Joint segmentation and reconstruction of hyperspectral data with compressed measurements. , 2011, Applied optics.
[10] Chein-I Chang,et al. Target signature-constrained mixed pixel classification for hyperspectral imagery , 2002, IEEE Trans. Geosci. Remote. Sens..
[11] Michael W. Mahoney,et al. A randomized algorithm for a tensor-based generalization of the singular value decomposition , 2007 .
[12] Chein-I Chang,et al. Hyperspectral image classification and dimensionality reduction: an orthogonal subspace projection approach , 1994, IEEE Trans. Geosci. Remote. Sens..
[13] B. Parlett. The Symmetric Eigenvalue Problem , 1981 .
[14] Paul Geladi,et al. Techniques and applications of hyperspectral image analysis , 2007 .
[15] Antonio J. Plaza,et al. Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches , 2012, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.
[16] Martin Burtscher,et al. Floating-point data compression at 75 Gb/s on a GPU , 2011, GPGPU-4.
[17] Yin Zhang,et al. A Compressive Sensing and Unmixing Scheme for Hyperspectral Data Processing , 2012, IEEE Transactions on Image Processing.
[18] Guillermo Sapiro,et al. Learning discriminative sparse models for source separation and mapping of hyperspectral imagery , 2010 .
[19] Robert H. Halstead,et al. Matrix Computations , 2011, Encyclopedia of Parallel Computing.
[20] William A. Pearlman,et al. Three-Dimensional Wavelet-Based Compression of Hyperspectral Images , 2006, Hyperspectral Data Compression.
[21] Nathan Halko,et al. Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions , 2009, SIAM Rev..
[22] Paul E. Lewis,et al. MODTRAN5: a reformulated atmospheric band model with auxiliary species and practical multiple scattering options , 2004, SPIE Defense + Commercial Sensing.
[23] Trac D. Tran,et al. Effects of linear projections on the performance of target detection and classification in hyperspectral imagery , 2011 .
[24] Ashwin A. Wagadarikar,et al. Single disperser design for coded aperture snapshot spectral imaging. , 2008, Applied optics.
[25] M E Gehm,et al. Single-shot compressive spectral imaging with a dual-disperser architecture. , 2007, Optics express.
[26] Heng Tao Shen,et al. Principal Component Analysis , 2009, Encyclopedia of Biometrics.
[27] Bea Thai,et al. Invariant subpixel material detection in hyperspectral imagery , 2002, IEEE Trans. Geosci. Remote. Sens..
[28] James E. Fowler,et al. Compressive-Projection Principal Component Analysis , 2009, IEEE Transactions on Image Processing.