Randomized SVD Methods in Hyperspectral Imaging

We present a randomized singular value decomposition (rSVD) method for the purposes of lossless compression, reconstruction, classification, and target detection with hyperspectral (HSI) data. Recent work in low-rank matrix approximations obtained from random projections suggests that these approximations are well suited for randomized dimensionality reduction. Approximation errors for the rSVD are evaluated on HSI, and comparisons aremade to deterministic techniques and as well as to other randomized low-rank matrix approximation methods involving compressive principal component analysis. Numerical tests on real HSI data suggest that the method is promising and is particularly effective for HSI data interrogation.

[1]  Ronald G. Resmini,et al.  Target detection in a forest environment using spectral imagery , 1997, Optics & Photonics.

[2]  Andrew Meigs,et al.  Ultraspectral imaging: A new contribution to global virtual presence , 2008, IEEE Aerospace and Electronic Systems Magazine.

[3]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[4]  Paul E. Lewis,et al.  MODTRAN 5: a reformulated atmospheric band model with auxiliary species and practical multiple scattering options: update , 2005 .

[5]  Paul Geladi,et al.  Comprar Techniques and Applications of Hyperspectral Image Analysis | Paul Geladi | 9780470010860 | Wiley , 2007 .

[6]  Philipp Birken,et al.  Numerical Linear Algebra , 2011, Encyclopedia of Parallel Computing.

[7]  Guillermo Sapiro,et al.  Learning Discriminative Sparse Representations for Modeling, Source Separation, and Mapping of Hyperspectral Imagery , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[8]  R. Sahoo,et al.  Hyperspectral Remote Sensing , 2013, Encyclopedia of Mathematical Geosciences.

[9]  Qiang Zhang,et al.  Joint segmentation and reconstruction of hyperspectral data with compressed measurements. , 2011, Applied optics.

[10]  Chein-I Chang,et al.  Target signature-constrained mixed pixel classification for hyperspectral imagery , 2002, IEEE Trans. Geosci. Remote. Sens..

[11]  Michael W. Mahoney,et al.  A randomized algorithm for a tensor-based generalization of the singular value decomposition , 2007 .

[12]  Chein-I Chang,et al.  Hyperspectral image classification and dimensionality reduction: an orthogonal subspace projection approach , 1994, IEEE Trans. Geosci. Remote. Sens..

[13]  B. Parlett The Symmetric Eigenvalue Problem , 1981 .

[14]  Paul Geladi,et al.  Techniques and applications of hyperspectral image analysis , 2007 .

[15]  Antonio J. Plaza,et al.  Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches , 2012, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[16]  Martin Burtscher,et al.  Floating-point data compression at 75 Gb/s on a GPU , 2011, GPGPU-4.

[17]  Yin Zhang,et al.  A Compressive Sensing and Unmixing Scheme for Hyperspectral Data Processing , 2012, IEEE Transactions on Image Processing.

[18]  Guillermo Sapiro,et al.  Learning discriminative sparse models for source separation and mapping of hyperspectral imagery , 2010 .

[19]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[20]  William A. Pearlman,et al.  Three-Dimensional Wavelet-Based Compression of Hyperspectral Images , 2006, Hyperspectral Data Compression.

[21]  Nathan Halko,et al.  Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions , 2009, SIAM Rev..

[22]  Paul E. Lewis,et al.  MODTRAN5: a reformulated atmospheric band model with auxiliary species and practical multiple scattering options , 2004, SPIE Defense + Commercial Sensing.

[23]  Trac D. Tran,et al.  Effects of linear projections on the performance of target detection and classification in hyperspectral imagery , 2011 .

[24]  Ashwin A. Wagadarikar,et al.  Single disperser design for coded aperture snapshot spectral imaging. , 2008, Applied optics.

[25]  M E Gehm,et al.  Single-shot compressive spectral imaging with a dual-disperser architecture. , 2007, Optics express.

[26]  Heng Tao Shen,et al.  Principal Component Analysis , 2009, Encyclopedia of Biometrics.

[27]  Bea Thai,et al.  Invariant subpixel material detection in hyperspectral imagery , 2002, IEEE Trans. Geosci. Remote. Sens..

[28]  James E. Fowler,et al.  Compressive-Projection Principal Component Analysis , 2009, IEEE Transactions on Image Processing.