Solution of a Model Boltzmann Equation via Steepest Descent in the 2-Wasserstein Metric

Abstract.We study a model Boltzmann equation closely related to the BGK equation using a steepest-descent method in the Wasserstein metric, and prove global existence of energy-and momentum-conserving solutions. We also show that the solutions converge to the manifold of local Maxwellians in the large-time limit, and obtain other information on the behavior of the solutions. We show how the Wasserstein metric is natural for this problem because it is adapted to the study of both the free streaming and the ‘‘collisions’’.

[1]  E. Stein,et al.  The characterization of functions arising as potentials. II , 1961 .

[2]  R. McCann A Convexity Principle for Interacting Gases , 1997 .

[3]  Y. Brenier Polar Factorization and Monotone Rearrangement of Vector-Valued Functions , 1991 .

[4]  L. Evans,et al.  Differential equations methods for the Monge-Kantorovich mass transfer problem , 1999 .

[5]  Pierre-Louis Lions,et al.  Lp regularity of velocity averages , 1991 .

[6]  L. Kantorovich On the Translocation of Masses , 2006 .

[7]  M. Talagrand Transportation cost for Gaussian and other product measures , 1996 .

[8]  Luis A. Caffarelli,et al.  Monotonicity Properties of Optimal Transportation¶and the FKG and Related Inequalities , 2000 .

[9]  L. Caffarelli The regularity of mappings with a convex potential , 1992 .

[10]  S. Rachev,et al.  Mass transportation problems , 1998 .

[11]  R. J. DiPerna,et al.  Global solutions of Boltzmann's equation and the entropy inequality , 1991 .

[12]  W. Gangbo,et al.  The geometry of optimal transportation , 1996 .

[13]  W. Gangbo,et al.  Constrained steepest descent in the 2-Wasserstein metric , 2003, math/0312063.

[14]  Wilfrid Gangbo An elementary proof of the polar factorization of vector-valued functions , 1994 .

[15]  Max Bezard,et al.  Régularité $L\sp p$ précisée des moyennes dans les équations de transport , 1994 .

[16]  S. Rachev The Monge–Kantorovich Mass Transference Problem and Its Stochastic Applications , 1985 .

[17]  James Clerk Maxwell,et al.  IV. On the dynamical theory of gases , 1868, Philosophical Transactions of the Royal Society of London.

[18]  C. Villani,et al.  Generalization of an Inequality by Talagrand and Links with the Logarithmic Sobolev Inequality , 2000 .

[19]  L. Caffarelli Boundary regularity of maps with convex potentials – II , 1996 .

[20]  R. McCann Existence and uniqueness of monotone measure-preserving maps , 1995 .

[21]  François Golse,et al.  Kinetic equations and asympotic theory , 2000 .

[22]  Marion Kee,et al.  Analysis , 2004, Machine Translation.

[23]  Stephan Luckhaus,et al.  Quasilinear elliptic-parabolic differential equations , 1983 .

[24]  D. Kinderlehrer,et al.  THE VARIATIONAL FORMULATION OF THE FOKKER-PLANCK EQUATION , 1996 .

[25]  P. Lions,et al.  On the Cauchy problem for Boltzmann equations: global existence and weak stability , 1989 .

[26]  J. Cooper SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONS , 1973 .

[27]  Felix Otto,et al.  Doubly Degenerate Diffusion Equations as Steepest Descent , 1996 .

[28]  L. Boltzmann Weitere Studien über das Wärmegleichgewicht unter Gasmolekülen , 1970 .

[29]  H. Brezis Analyse fonctionnelle : théorie et applications , 1983 .

[30]  R. Illner,et al.  The mathematical theory of dilute gases , 1994 .