Parallel Semi-Implicit Time Integrators

In this paper, we further develop a family of parallel time integrators known as Revisionist Integral Deferred Correction methods (RIDC) to allow for the semi-implicit solution of time dependent PDEs. Additionally, we show that our semi-implicit RIDC algorithm can harness the computational potential of multiple general purpose graphical processing units (GPUs) in a single node by utilizing existing CUBLAS libraries for matrix linear algebra routines in our implementation. In the numerical experiments, we show that our implementation computes a fourth order solution using four GPUs and four CPUs in approximately the same wall clock time as a first order solution computed using a single GPU and a single CPU.

[1]  Martin J. Gander,et al.  Nonlinear Convergence Analysis for the Parareal Algorithm , 2008 .

[2]  Benjamin W. Ong,et al.  COMMENTS ON HIGH-ORDER INTEGRATORS EMBEDDED WITHIN INTEGRAL DEFERRED CORRECTION METHODS , 2009 .

[3]  Andrea Toselli,et al.  Domain decomposition methods : algorithms and theory , 2005 .

[4]  Michael L. Minion,et al.  Implications of the choice of predictors for semi-implicit Picard integral deferred correction methods , 2007 .

[5]  Y. Maday,et al.  A parareal in time procedure for the control of partial differential equations , 2002 .

[6]  Manfred Krafczyk,et al.  Free surface flow simulations on GPGPUs using the LBM , 2011, Comput. Math. Appl..

[7]  Joshua A. Anderson,et al.  General purpose molecular dynamics simulations fully implemented on graphics processing units , 2008, J. Comput. Phys..

[8]  P. Zadunaisky On the estimation of errors propagated in the numerical integration of ordinary differential equations , 1976 .

[9]  Martin J. Gander,et al.  Analysis of the Parareal Time-Parallel Time-Integration Method , 2007, SIAM J. Sci. Comput..

[10]  Martin J. Gander,et al.  On the Superlinear and Linear Convergence of the Parareal Algorithm , 2007, CSE 2007.

[11]  Steven J. Ruuth,et al.  Implicit-explicit methods for time-dependent partial differential equations , 1995 .

[12]  M. Minion Semi-implicit spectral deferred correction methods for ordinary differential equations , 2003 .

[13]  Benjamin W. Ong,et al.  Semi-implicit integral deferred correction constructed with additive Runge-Kutta methods , 2011 .

[14]  Michael L. Minion,et al.  TOWARD AN EFFICIENT PARALLEL IN TIME METHOD FOR PARTIAL DIFFERENTIAL EQUATIONS , 2012 .

[15]  L. Greengard,et al.  Spectral Deferred Correction Methods for Ordinary Differential Equations , 2000 .

[16]  Andrew J. Christlieb,et al.  A Parallel Space-Time Algorithm , 2012, SIAM J. Sci. Comput..

[17]  Colin B. Macdonald,et al.  Parallel High-Order Integrators , 2010, SIAM J. Sci. Comput..

[18]  Daisuke Sato,et al.  Acceleration of cardiac tissue simulation with graphic processing units , 2009, Medical & Biological Engineering & Computing.

[19]  Samantha S. Foley,et al.  A dependency-driven formulation of parareal: parallel-in-time solution of PDEs as a many-task application , 2011, MTAGS '11.

[20]  Andrew J. Christlieb,et al.  Implicit Parallel Time Integrators , 2011, J. Sci. Comput..

[21]  G. Lafferriere,et al.  On an iterative improvement of the approximate solution of some ordinary differential equations , 1980 .

[22]  Andrew J. Christlieb,et al.  Integral deferred correction methods constructed with high order Runge-Kutta integrators , 2009, Math. Comput..

[23]  M. Carpenter,et al.  Additive Runge-Kutta Schemes for Convection-Diffusion-Reaction Equations , 2003 .

[24]  Jun Zou,et al.  Some new additive Runge-Kutta methods and their applications , 2006 .

[25]  Jack J. Purdum,et al.  C programming guide , 1983 .