Particle gradient descent model for point process generation

[1]  S. Mallat,et al.  New interpretable statistics for large-scale structure analysis and generation , 2020, 2006.06298.

[2]  K. Schneider,et al.  Divergence and convergence of inertial particles in high-Reynolds-number turbulence , 2020, Journal of Fluid Mechanics.

[3]  Natalia Gimelshein,et al.  PyTorch: An Imperative Style, High-Performance Deep Learning Library , 2019, NeurIPS.

[4]  Sixin Zhang,et al.  Maximum Entropy Models from Phase Harmonic Covariances , 2019, Applied and Computational Harmonic Analysis.

[5]  Dominic Schuhmacher,et al.  Metrics and barycenters for point pattern data , 2019, Statistics and Computing.

[6]  J. Dvořák,et al.  Stochastic Reconstruction for Inhomogeneous Point Patterns , 2019, Methodology and Computing in Applied Probability.

[7]  Roberto Leonarduzzi,et al.  Maximum-entropy Scattering Models for Financial Time Series , 2019, ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[8]  Joakim Andén,et al.  Kymatio: Scattering Transforms in Python , 2018, J. Mach. Learn. Res..

[9]  Yue Qi,et al.  Steerable Wavelet Scattering for 3D Atomic Systems with Application to Li-Si Energy Prediction , 2018, ArXiv.

[10]  Sixin Zhang,et al.  Phase harmonic correlations and convolutional neural networks , 2018, Information and Inference: A Journal of the IMA.

[11]  Mariette Yvinec,et al.  Geometric and Topological Inference , 2018 .

[12]  Drew F. K. Williamson,et al.  TDAstats: R pipeline for computing persistent homology in topological data analysis , 2018, J. Open Source Softw..

[13]  R. Onishi,et al.  Turbulent enhancement of radar reflectivity factor for polydisperse cloud droplets , 2018, Atmospheric Chemistry and Physics.

[14]  Joan Bruna,et al.  Multiscale sparse microcanonical models , 2018, Mathematical Statistics and Learning.

[15]  Tuomas Rajala,et al.  A review on anisotropy analysis of spatial point patterns , 2017, Spatial Statistics.

[16]  Frédéric Chazal,et al.  An Introduction to Topological Data Analysis: Fundamental and Practical Aspects for Data Scientists , 2017, Frontiers in Artificial Intelligence.

[17]  D. Dereudre Introduction to the Theory of Gibbs Point Processes , 2017, Stochastic Geometry.

[18]  Jae Oh Woo,et al.  On the entropy and mutual information of point processes , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).

[19]  R. S. Stoica,et al.  Bisous model - Detecting filamentary patterns in point processes , 2016, Astron. Comput..

[20]  F. Stillinger,et al.  Ground states of stealthy hyperuniform potentials: I. Entropically favored configurations. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  F. Stillinger,et al.  Ground states of stealthy hyperuniform potentials. II. Stacked-slider phases. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  Leon A. Gatys,et al.  Texture Synthesis Using Convolutional Neural Networks , 2015, NIPS.

[23]  Brittany Terese Fasy,et al.  Introduction to the R package TDA , 2014, ArXiv.

[24]  Adrian Baddeley,et al.  Multitype point process analysis of spines on the dendrite network of a neuron , 2014 .

[25]  G. Peyré,et al.  Sliced and Radon Wasserstein Barycenters of Measures , 2014, Journal of Mathematical Imaging and Vision.

[26]  Thorsten Wiegand,et al.  Handbook of Spatial Point-Pattern Analysis in Ecology , 2013 .

[27]  Nicolas Bonnotte Unidimensional and Evolution Methods for Optimal Transportation , 2013 .

[28]  Daryl J. Daley,et al.  An Introduction to the Theory of Point Processes , 2013 .

[29]  Pierre Brémaud,et al.  MATHEMATICAL PRINCIPLES OF SIGNAL PROCESSING: FOURIER AND WAVELET ANALYSIS , 2012 .

[30]  Michael Unser,et al.  3D steerable wavelets and monogenic analysis for bioimaging , 2011, 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[31]  Julien Rabin,et al.  Wasserstein Barycenter and Its Application to Texture Mixing , 2011, SSVM.

[32]  A. Pumir,et al.  Inertial particle collisions in turbulent synthetic flows: quantifying the sling effect. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  A. Pumir,et al.  Intermittent particle distribution in synthetic free-surface turbulent flows. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[34]  D. Stoyan,et al.  Statistical Analysis and Modelling of Spatial Point Patterns , 2008 .

[35]  Eva Bjørn Vedel Jensen,et al.  Bayesian analysis of spatial point processes in the neighbourhood of Voronoi networks , 2007, Stat. Comput..

[36]  A. Tscheschel,et al.  Statistical reconstruction of random point patterns , 2006, Comput. Stat. Data Anal..

[37]  Kai Schneider,et al.  Coherent vortex extraction and simulation of 2D isotropic turbulence , 2006 .

[38]  S. Torquato,et al.  Random Heterogeneous Materials: Microstructure and Macroscopic Properties , 2005 .

[39]  J. Mateu,et al.  Detection of cosmic filaments using the Candy model , 2004, astro-ph/0405370.

[40]  Ilya S. Molchanov,et al.  Steepest descent algorithms in a space of measures , 2002, Stat. Comput..

[41]  Eero P. Simoncelli,et al.  A Parametric Texture Model Based on Joint Statistics of Complex Wavelet Coefficients , 2000, International Journal of Computer Vision.

[42]  T. Mattfeldt Stochastic Geometry and Its Applications , 1996 .

[43]  D. Stoyan,et al.  Fractals, random shapes and point fields : methods of geometrical statistics , 1996 .

[44]  J. Nocedal,et al.  A Limited Memory Algorithm for Bound Constrained Optimization , 1995, SIAM J. Sci. Comput..

[45]  Y. Meyer Wavelets and Operators , 1993 .

[46]  Jorge Nocedal,et al.  On the limited memory BFGS method for large scale optimization , 1989, Math. Program..

[47]  U. Greb,et al.  The interpretation of the bispectrum and bicoherence for non-linear interactions of continuous spectra , 1988 .

[48]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[49]  M. S. Bartlett,et al.  The spectral analysis of two-dimensional point processes , 1964 .

[50]  E. Jaynes Information Theory and Statistical Mechanics , 1957 .

[51]  Bartlomiej Blaszczyszyn,et al.  Random Measures, Point Processes, and Stochastic Geometry , 2020 .

[52]  Stéphane Mallat A Wavelet Tour of Signal Processing - The Sparse Way, 3rd Edition , 2009 .

[53]  Emmanuel Bacry,et al.  Continuous cascade models for asset returns , 2008 .

[54]  S. Mallat,et al.  A Wavelet Tour of Signal Processing : The Sparse Way , 2008 .

[55]  M. Kenward,et al.  An Introduction to the Bootstrap , 2007 .

[56]  Peter J. Diggle,et al.  Modelling the Bivariate Spatial Distribution of Amacrine Cells , 2006 .

[57]  S. Torquato Random Heterogeneous Materials , 2002 .

[58]  Pierre Brémaud,et al.  Mathematical principles of signal processing , 2002 .

[59]  Kluwer Academic Publishers Methodology and computing in applied probability , 1999 .