A proximal point algorithm with asymmetric linear term

In this paper, we propose an asymmetric proximal point algorithm for solving variational inequality problems. The algorithm is “asymmetric” in the sense that the matrix in the linear proximal term is not necessary to be a symmetric matrix, which makes the method more flexible, especially in dealing with problems with separable structures. Under some suitable conditions, we prove the global linear convergence of the algorithm. To make the method more practical, we allow the subproblem to be solved in an approximate manner and a flexible inaccuracy criterion with constant parameter is adopted. Finally, we report some preliminary numerical results.

[1]  Boris Polyak,et al.  Constrained minimization methods , 1966 .

[2]  John N. Tsitsiklis,et al.  Parallel and distributed computation , 1989 .

[3]  B. Mercier,et al.  A dual algorithm for the solution of nonlinear variational problems via finite element approximation , 1976 .

[4]  R. Glowinski,et al.  Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de Dirichlet non linéaires , 1975 .

[5]  R. Rockafellar Monotone Operators and the Proximal Point Algorithm , 1976 .

[6]  Bingsheng He,et al.  Convergence Analysis of Primal-Dual Algorithms for a Saddle-Point Problem: From Contraction Perspective , 2012, SIAM J. Imaging Sci..

[7]  Deren Han,et al.  An improved first-order primal-dual algorithm with a new correction step , 2012, Journal of Global Optimization.

[8]  Deren Han,et al.  A hybrid entropic proximal decomposition method with self-adaptive strategy for solving variational inequality problems , 2008, Comput. Math. Appl..

[9]  R. Tyrrell Rockafellar,et al.  Augmented Lagrangians and Applications of the Proximal Point Algorithm in Convex Programming , 1976, Math. Oper. Res..

[10]  Deren Han A generalized proximal-point-based prediction-correction method for variational inequality problems , 2008 .

[11]  Jonathan Eckstein,et al.  Approximate iterations in Bregman-function-based proximal algorithms , 1998, Math. Program..

[12]  Jonathan Eckstein,et al.  Nonlinear Proximal Point Algorithms Using Bregman Functions, with Applications to Convex Programming , 1993, Math. Oper. Res..

[13]  F. Facchinei,et al.  Finite-Dimensional Variational Inequalities and Complementarity Problems , 2003 .

[14]  Marc Teboulle,et al.  Entropic Proximal Mappings with Applications to Nonlinear Programming , 1992, Math. Oper. Res..

[15]  M. Hestenes Multiplier and gradient methods , 1969 .

[16]  Bingsheng He,et al.  On the Convergence of Primal-Dual Hybrid Gradient Algorithm , 2014, SIAM J. Imaging Sci..

[17]  H. H. Rachford,et al.  On the numerical solution of heat conduction problems in two and three space variables , 1956 .

[18]  Hongjin He,et al.  A class of nonlinear proximal point algorithms for variational inequality problems , 2015, Int. J. Comput. Math..

[19]  B. He,et al.  A new accuracy criterion for approximate proximal point algorithms , 2001 .

[20]  Dimitri P. Bertsekas,et al.  On the Douglas—Rachford splitting method and the proximal point algorithm for maximal monotone operators , 1992, Math. Program..

[21]  Bingsheng He,et al.  Comparison of Two Kinds of Prediction-Correction Methods for Monotone Variational Inequalities , 2004, Comput. Optim. Appl..

[22]  Marc Teboulle,et al.  Convergence of Proximal-Like Algorithms , 1997, SIAM J. Optim..

[23]  Bingsheng He,et al.  Proximal-Point Algorithm Using a Linear Proximal Term , 2009 .

[24]  A. Goldstein Convex programming in Hilbert space , 1964 .

[25]  Marc Teboulle,et al.  A Logarithmic-Quadratic Proximal Method for Variational Inequalities , 1999, Comput. Optim. Appl..

[26]  Deren Han A New Hybrid Generalized Proximal Point Algorithm for Variational Inequality Problems , 2003, J. Glob. Optim..

[27]  G. M. Korpelevich The extragradient method for finding saddle points and other problems , 1976 .

[28]  M. J. D. Powell,et al.  A method for nonlinear constraints in minimization problems , 1969 .

[29]  G. Minty Monotone (nonlinear) operators in Hilbert space , 1962 .

[30]  Alfredo N. Iusem,et al.  A Generalized Proximal Point Algorithm for the Variational Inequality Problem in a Hilbert Space , 1998, SIAM J. Optim..

[31]  Y. Censor,et al.  Proximal minimization algorithm withD-functions , 1992 .