Confit III. Summary and perspectives on dynamics in confinement

[1]  A. Mayes Softer at the boundary , 2005, Nature materials.

[2]  L. Schadler,et al.  Quantitative equivalence between polymer nanocomposites and thin polymer films , 2005, Nature materials.

[3]  M. Alcoutlabi,et al.  Effects of confinement on material behaviour at the nanometre size scale , 2005 .

[4]  G. McKenna,et al.  Rheological Measurements of the Thermoviscoelastic Response of Ultrathin Polymer Films , 2005, Science.

[5]  A. Faraone,et al.  Fragile-to-strong liquid transition in deeply supercooled confined water. , 2004, The Journal of chemical physics.

[6]  F. Maurer,et al.  Characterization of free volume and density gradients of polystyrene surfaces by low-energy positron lifetime measurements , 2004 .

[7]  C. Schick,et al.  Glass transition of polymers confined to nanoporous glasses , 2004 .

[8]  M. Chan,et al.  Probable observation of a supersolid helium phase , 2004, Nature.

[9]  J. Swenson,et al.  Dynamics of water in molecular sieves by dielectric spectroscopy , 2003, The European physical journal. E, Soft matter.

[10]  D. Morineau,et al.  Confinement of molecular liquids: Consequences on thermodynamic, static and dynamical properties of benzene and toluene , 2003, The European physical journal. E, Soft matter.

[11]  Christopher J. Ellison,et al.  Sensing the glass transition in thin and ultrathin polymer films via fluorescence probes and labels , 2002 .

[12]  D. Morineau,et al.  Finite-size and surface effects on the glass transition of liquid toluene confined in cylindrical mesopores , 2002 .

[13]  G. McKenna,et al.  Enthalpy recovery of a glass-forming liquid constrained in a nanoporous matrix: Negative pressure effects , 2002, The European physical journal. E, Soft matter.

[14]  G. Reiter,et al.  Spin-cast, thin, glassy polymer films: Highly metastable forms of matter , 2001 .

[15]  K. Dalnoki-Veress,et al.  Molecular weight dependence of reductions in the glass transition temperature of thin, freely standing polymer films. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  G. McKenna Size and confinement effects in glass forming liquids : Perspectives on bulk and nano-scale behaviours , 2000 .

[17]  G. McKenna,et al.  Size and confinement effects on the glass transition behavior of polystyrene/ o -terphenyl polymer solutions , 2000 .

[18]  Joseph L. Keddie,et al.  Size-Dependent Depression of the Glass Transition Temperature in Polymer Films , 1994 .

[19]  J. Zhang,et al.  Effects of confinement on the glass transition temperature of molecular liquids , 1992 .

[20]  C. Jackson,et al.  The glass transition of organic liquids confined to small pores , 1991 .

[21]  S. Edwards,et al.  The Theory of Polymer Dynamics , 1986 .

[22]  C. Angell,et al.  Isothermal compressibility of supercooled water and evidence for a thermodynamic singularity at −45°C , 1976 .

[23]  P. Gennes,et al.  Reptation of a Polymer Chain in the Presence of Fixed Obstacles , 1971 .

[24]  P. E. Rouse A Theory of the Linear Viscoelastic Properties of Dilute Solutions of Coiling Polymers , 1953 .

[25]  Gregory B. McKenna,et al.  Glass Formation and Glassy Behavior , 1996 .

[26]  L. Struik Physical aging in amorphous polymers and other materials , 1978 .