The early history of IBM's SiGe mixed signal technology

The history of Silicon Germanium (SiGe) at IBM is a story of persistence. The program began with an idea to replace a conventional implantation step, used in every silicon semiconductor bipolar process, by growing an in-situ doped alloy (SiGe). Many people thought the idea was of value only for a few exotic niche "research" applications. This is a story about how a small group of people persuaded a large digital computer manufacturer to invest in a new unproven technology for telecommunication applications in a field which the company knew little about. It is a success story, as SiGe technology has now become the only BiCMOS technology in development in IBM and is in the roadmaps of every major telecommunication company.

[1]  U. Langmann,et al.  A 10 Gb/s eye opening monitor IC for decision-guided optimization of the frequency response of an optical receiver , 2000, 2000 IEEE International Solid-State Circuits Conference. Digest of Technical Papers (Cat. No.00CH37056).

[2]  John D. Cressler,et al.  Epitaxial-base double-poly self-aligned bipolar transistors , 1990, International Technical Digest on Electron Devices.

[3]  B. G. Bosch,et al.  Si/SiGe heterojunction bipolar transistors with current gains up to 5000 , 1989, International Technical Digest on Electron Devices Meeting.

[4]  Bernard S. Meyerson,et al.  The thermal stability of SiGe films deposited by ultrahigh-vacuum chemical vapor deposition , 1991 .

[5]  Keith A. Jenkins,et al.  Optimization of SiGe HBT technology for high speed analog and mixed-signal applications , 1993, Proceedings of IEEE International Electron Devices Meeting.

[6]  K. Ismail Si/SiGe high-speed field-effect transistors , 1995, Proceedings of International Electron Devices Meeting.

[7]  G.L. Patton,et al.  63-75 GHz fT SiGe-base heterojunction bipolar technology , 1990, Digest of Technical Papers.1990 Symposium on VLSI Technology.

[8]  J.M.C. Stork,et al.  Characterization of IC devices fabricated in low temperature (550°c) epitaxy by UHV/CVD technique , 1986, 1986 International Electron Devices Meeting.

[9]  W. Idler,et al.  40 Gbit/s quaternary dispersion supported transmission over 31 km standard singlemode fibre without optical dispersion compensation , 1998, 24th European Conference on Optical Communication. ECOC '98 (IEEE Cat. No.98TH8398).

[10]  G. Freeman,et al.  SiGe HBT Performance Improvements from Lateral Scaling , 1999, 29th European Solid-State Device Research Conference.

[11]  J.M.C. Stork,et al.  A high performance epitaxial SiGe-base ECL BiCMOS technology , 1992, 1992 International Technical Digest on Electron Devices Meeting.

[12]  R. Hammond,et al.  Extremely high transconductance Ge/Si/sub 0.4/Ge/sub 0.6/ p-MODFET's grown by UHV-CVD , 2000, IEEE Electron Device Letters.

[13]  J.M.C. Stork,et al.  55 Ghz Polysilicon-Emitter Graded Sige-Base Pnp Transistors , 1991, 1991 Symposium on VLSI Technology.

[14]  J.M.C. Stork,et al.  30 GHz polysilicon-emitter and single-crystal-emitter graded SiGe-base PNP transistors , 1990, International Technical Digest on Electron Devices.

[15]  Steven J. Koester,et al.  High-fT n-MODFETs fabricated on Si/SiGe heterostructures grown by UHV-CVD , 1999 .

[16]  Young Kim,et al.  Si/SiGe:C heterojunction bipolar transistors in an epi-free well, single-polysilicon technology , 1998, International Electron Devices Meeting 1998. Technical Digest (Cat. No.98CH36217).

[17]  J.M.C. Stork,et al.  Silicon-germanium base heterojunction bipolar transistors by molecular beam epitaxy , 1988, IEEE Electron Device Letters.

[18]  J.R. Long,et al.  RF analog and digital circuits in SiGe technology , 1996, 1996 IEEE International Solid-State Circuits Conference. Digest of TEchnical Papers, ISSCC.

[19]  Richard B. Fair,et al.  Low-thermal-budget process modeling with the PREDICT computer program , 1988 .

[20]  David R. Greenberg,et al.  Lateral scaling of the self-aligned extrinsic base in SiGe HBTs , 1996, Proceedings of the 1996 BIPOLAR/BiCMOS Circuits and Technology Meeting.

[21]  C.A. King,et al.  Electrical characterization of in-situ epitaxially grown Si p-n junctions fabricated using limited reaction processing , 1988, IEEE Electron Device Letters.

[22]  J.M.C. Stork,et al.  Vertical profile optimization of very high frequency epitaxial Si- and SiGe-base bipolar transistors , 1993, Proceedings of IEEE International Electron Devices Meeting.

[23]  J.D. Plummer,et al.  Advanced heterojunction Ge/sub x/Si/sub 1-x//Si bipolar devices , 1989, International Technical Digest on Electron Devices Meeting.

[24]  P. J. Restle,et al.  Si/SiGe p-Channel MOSFETs , 1991, 1991 Symposium on VLSI Technology.

[25]  Judy L. Hoyt,et al.  High frequency Si/Si/sub 1-x/Ge/sub x/ heterojunction bipolar transistors , 1989, International Technical Digest on Electron Devices Meeting.

[26]  H. Dambkes,et al.  Very low temperature MBE process for SiGe and Si device structures , 1988, Technical Digest., International Electron Devices Meeting.

[27]  J. Hoyt,et al.  Si/Si/sub 1-x/Ge/sub x/ heterojunction bipolar transistors produced by limited reaction processing , 1989, IEEE Electron Device Letters.

[28]  E. Bergeault,et al.  Large-signal performance of high-BV/sub CEO/ graded epi-base SiGe HBTs at wireless frequencies , 1997, International Electron Devices Meeting. IEDM Technical Digest.

[29]  D. Harame,et al.  High performance operation of silicon bipolar transistors at liquid nitrogen temperature , 1987, 1987 International Electron Devices Meeting.

[30]  D. Harame,et al.  Epitaxial-base transistors with ultrahigh vacuum chemical vapor deposition (UHV/CVD) epitaxy: enhanced profile control for greater flexibility in device design , 1989, IEEE Electron Device Letters.

[31]  James D. Warnock,et al.  Silicon bipolar device structures for digital applications: technology trends and future directions , 1995 .

[32]  Kunihiro Suzuki,et al.  Optimum base doping profile for minimum base transit time , 1991 .

[33]  J.M.C. Stork,et al.  Profile leverage in self-aligned epitaxial Si or SiGe base bipolar technology , 1990, International Technical Digest on Electron Devices.

[34]  J.M.C. Stork,et al.  Graded SiGe-Channel Modulation-Doped p-Mosfets , 1991, 1991 Symposium on VLSI Technology.

[35]  Judy L. Hoyt,et al.  Characterization of p-N Si/sub 1-x/Ge/sub x//Si heterojunctions grown by limited reaction processing , 1988 .

[36]  J. Regolini,et al.  A high performance low complexity SiGe HBT for BiCMOS integration , 1998, Proceedings of the 1998 Bipolar/BiCMOS Circuits and Technology Meeting (Cat. No.98CH36198).

[37]  Bernard S. Meyerson,et al.  Low‐temperature silicon epitaxy by ultrahigh vacuum/chemical vapor deposition , 1986 .

[38]  Judy L. Hoyt,et al.  Bandgap and transport properties of Si/sub 1-x/Ge/sub x/ by analysis of nearly ideal Si/Si/sub 1-x/Ge/sub x//Si heterojunction bipolar transistors , 1989 .

[39]  Keith A. Jenkins,et al.  Sub-30ps ECL circuits using high-f/sub T/ Si and SiGe epitaxial base SEEW transistors , 1990, International Technical Digest on Electron Devices.

[40]  B. Meyerson,et al.  Bistable conditions for low‐temperature silicon epitaxy , 1990 .

[41]  E. M. Buturla,et al.  Finite-element analysis of semiconductor devices: the FIELDAY program , 1981 .

[42]  H. Dambkes,et al.  Si/SiGe heterojunction bipolar transistor made by molecular-beam epitaxy , 1989 .

[43]  Young-June Park,et al.  Two-dimensional device simulation program: 2DP , 1985 .

[44]  J.M.C. Stork,et al.  Graded-SiGe-base, poly-emitter heterojunction bipolar transistors , 1989, IEEE Electron Device Letters.

[45]  Bernard S. Meyerson,et al.  113-GHz f/sub T/ graded-base SiGe HBT's , 1993 .

[46]  H. Dambkes,et al.  Si/SiGe heterojunction bipolar transistor with graded gap SiGe base made by molecular beam epitaxy , 1988, Technical Digest., International Electron Devices Meeting.

[47]  Bernard S. Meyerson,et al.  113-GHz fT graded-base SiGe HBTs , 1993, 51st Annual Device Research Conference.

[48]  J.M.C. Stork,et al.  High performance Si and SiGe-base p-n-p transistors , 1988, Technical Digest., International Electron Devices Meeting.

[49]  J. W. Matthews,et al.  Defects in epitaxial multilayers: I. Misfit dislocations* , 1974 .

[50]  David J. Roulston,et al.  Polysilicon emitter bipolar transistors , 1989 .

[51]  J.M.C. Stork,et al.  Self-aligned SiGe-base heterojunction bipolar transistor by selective epitaxy emitter window (SEEW) technology , 1990, IEEE Electron Device Letters.

[52]  J.M.C. Stork,et al.  SiGe-base heterojunction bipolar transistors: physics and design issues , 1990, International Technical Digest on Electron Devices.

[53]  W. G. Opyd,et al.  Growth of GeSi/Si strained‐layer superlattices using limited reaction processing , 1987 .

[54]  J.M.C. Stork,et al.  Bipolar transistor with self-aligned lateral profile , 1987, IEEE Electron Device Letters.

[55]  J. Nocera,et al.  High-transconductance n-type Si/SiGe modulation-doped field-effect transistors , 1992, IEEE Electron Device Letters.

[56]  J. Stork,et al.  Tunneling in base-emitter junctions , 1983, IEEE Transactions on Electron Devices.

[57]  B. Jagannathan,et al.  A 0.18 /spl mu/m BiCMOS technology featuring 120/100 GHz (f/sub T//f/sub max/) HBT and ASIC-compatible CMOS using copper interconnect , 2001, Proceedings of the 2001 BIPOLAR/BiCMOS Circuits and Technology Meeting (Cat. No.01CH37212).

[58]  M. Soyuer,et al.  A 200 mm SiGe-HBT BiCMOS technology for mixed signal applications , 1995, Proceedings of Bipolar/Bicmos Circuits and Technology Meeting.

[59]  James C. Sturm,et al.  Minority‐carrier properties of thin epitaxial silicon films fabricated by limited reaction processing , 1986 .

[60]  James F. Gibbons,et al.  Limited reaction processing: Silicon epitaxy , 1985 .

[61]  B. Jagannathan,et al.  A 0.18 /spl mu/m 90 GHz f/sub T/ SiGe HBT BiCMOS, ASIC-compatible, copper interconnect technology for RF and microwave applications , 1999, International Electron Devices Meeting 1999. Technical Digest (Cat. No.99CH36318).

[62]  H. Lifka,et al.  Two-dimensional transient enhanced diffusion and its impact on bipolar transistors , 1994, Proceedings of 1994 IEEE International Electron Devices Meeting.

[63]  J. Comfort,et al.  Low temperature operation of Si and SiGe bipolar transistors , 1990, International Technical Digest on Electron Devices.

[64]  D.D. Tang,et al.  1.25 /spl mu/m Deep-Groove-Isolated Self-Aligned Bipolar Circuits , 1982, IEEE Journal of Solid-State Circuits.

[65]  James C. Sturm,et al.  The effect of base-emitter spacers and strain dependent densities of states in Si/Si/sub 1-x/Ge/sub x//Si heterojunction bipolar transistors , 1989, International Technical Digest on Electron Devices Meeting.

[66]  Judy L. Hoyt,et al.  Si/Si/sub 1-x/Ge/sub x/ heterojunction bipolar transistors fabricated by limited reaction processing , 1988, Technical Digest., International Electron Devices Meeting.

[67]  David L. Harame,et al.  Base profile design for high-performance operation of bipolar transistors at liquid-nitrogen temperature , 1989 .

[68]  James C. Sturm,et al.  Thin, highly doped layers of epitaxial silicon deposited by limited reaction processing , 1986 .