3-D Direct Numerical Simulation of Gas–Liquid and Gas–Liquid–Solid Flow Systems Using the Level-Set and Immersed-Boundary Methods

Abstract The recent advances in level-set and Immersed Boundary methods (IBM) as applied to the simulation of complex multiphase flow systems are described. Two systems are considered. For system 1, a computational scheme is conceived to describe the three-dimensional (3-D) bubble dynamics in gas–liquid bubble columns and gas–liquid–solid fluidized beds. This scheme is utilized to simulate the motion of the gas, liquid, and solid phases, respectively, based on the level-set interface tracking method, the locally averaged time-dependent Navier–Stokes equations coupled with the Smagorinsky subgrid scale stress model, and the Lagrangian particle motion equations. For system 2, the hydrodynamics and heat-transfer phenomena of a liquid droplet in motion and during the impact process with a hot flat surface, as well as with a particle, are illustrated. The 3-D level-set method is used to portray the droplet surface deformation whilst in motion and during the impact process. The IBM is employed so that the particle–fluid boundary conditions are satisfied. The governing equations for the droplet and the surrounding gas phase are solved utilizing the finite volume method with the Arbitrary Lagrangian Eulerian (ALE) technique. To account for the multiscale effect due to lubrication-resistance induced by the vapor layer between the droplet and solid surface or solid particle formed by the film-boiling evaporation, a vapor-flow model is developed to calculate the pressure and velocity distributions along the vapor layer. The temperature fields in all phases and the local evaporation rate on the droplet surface are illustrated using a full-field heat-transfer model.

[1]  Gretar Tryggvason,et al.  An Adaptive, Cartesian, Front-Tracking Method for the Motion, Deformation and Adhesion of Circulating Cells , 1998 .

[2]  Z. Feng,et al.  Proteus: a direct forcing method in the simulations of particulate flows , 2005 .

[3]  R. Jackson,et al.  The Dynamics of Fluidized Particles , 2000 .

[4]  C. Peskin Numerical analysis of blood flow in the heart , 1977 .

[5]  Y. Tsuji,et al.  Discrete particle simulation of two-dimensional fluidized bed , 1993 .

[6]  E. Puckett,et al.  A High-Order Projection Method for Tracking Fluid Interfaces in Variable Density Incompressible Flows , 1997 .

[7]  R. Zenit,et al.  Mechanics of Immersed Particle Collisions , 1999 .

[8]  Robert F. Mudde,et al.  Two- and three-dimensional simulations of a bubble plume using a two-fluid model , 1999 .

[9]  D. Joseph,et al.  ENSEMBLE AVERAGED AND MIXTURE THEORY EQUATIONS FOR INCOMPRESSIBLE FLUID-PARTICLE SUSPENSIONS , 1990 .

[10]  John-Chang Chen,et al.  Heat transfer during liquid contact on superheated surfaces , 1995 .

[11]  Liang-Shih Fan,et al.  Dynamic behavior of collision of elastic spheres in viscous fluids , 1999 .

[12]  David F. Fletcher,et al.  A hydrodynamic and thermodynamic simulation of droplet impacts on hot surfaces, Part I: theoretical model , 2001 .

[13]  Jungwoo Kim,et al.  An immersed-boundary finite-volume method for simulations of flow in complex geometries , 2001 .

[14]  D. Fletcher,et al.  A simple kinetic theory treatment of volatile liquid-gas interfaces , 2001 .

[15]  A. A. Amsden,et al.  Transport of turbulence in numerical fluid dynamics , 1968 .

[16]  J. Brackbill,et al.  A continuum method for modeling surface tension , 1992 .

[17]  David S. Dandy,et al.  Buoyancy-driven motion of a deformable drop through a quiescent liquid at intermediate Reynolds numbers , 1989, Journal of Fluid Mechanics.

[18]  L. Fan,et al.  Three-dimensional simulation of impingement of a liquid droplet on a flat surface in the Leidenfrost regime , 2005 .

[19]  S. Zaleski,et al.  DIRECT NUMERICAL SIMULATION OF FREE-SURFACE AND INTERFACIAL FLOW , 1999 .

[20]  A. Frohn,et al.  Deformation of liquid droplets during collisions with hot walls: Experimental and Numerical Results , 1996 .

[21]  van Wpm Wim Swaaij,et al.  Computational fluid dynamics applied to gas-liquid contactors. , 1997 .

[22]  J. Monaghan Simulating Free Surface Flows with SPH , 1994 .

[23]  Francis H. Harlow,et al.  The Splash of a Liquid Drop , 1967 .

[24]  Mark Sussman,et al.  An Efficient, Interface-Preserving Level Set Redistancing Algorithm and Its Application to Interfacial Incompressible Fluid Flow , 1999, SIAM J. Sci. Comput..

[25]  Alexei Lapin,et al.  Numerical simulation of the dynamics of two-phase gasliquid flows in bubble columns , 1994 .

[26]  Liang-Shih Fan,et al.  Bubble breakage due to particle collision in a liquid medium: particle wettability effects , 1989 .

[27]  Gianluca Iaccarino,et al.  IMMERSED BOUNDARY METHODS , 2005 .

[28]  Dimos Poulikakos,et al.  Wetting effects on the spreading of a liquid droplet colliding with a flat surface: Experiment and modeling , 1995 .

[29]  J. Sethian,et al.  LEVEL SET METHODS FOR FLUID INTERFACES , 2003 .

[30]  L. Sirovich,et al.  Modeling a no-slip flow boundary with an external force field , 1993 .

[31]  G. Tryggvason,et al.  A front-tracking method for viscous, incompressible, multi-fluid flows , 1992 .

[32]  W. Shyy,et al.  Regular Article: An Accurate Cartesian Grid Method for Viscous Incompressible Flows with Complex Immersed Boundaries , 1999 .

[33]  L. Fan,et al.  Evaporative liquid jets in gas–liquid–solid flow system ☆ , 2001 .

[34]  Javad Mostaghimi,et al.  Deposition of tin droplets on a steel plate: simulations and experiments , 1998 .

[35]  Andrea Prosperetti,et al.  Averaged equations for inviscid disperse two-phase flow , 1994, Journal of Fluid Mechanics.

[36]  Kenji Sakamoto,et al.  LIQUID-SOLID CONTACT STATE AND FLUCTUATION OF THE VAPOR FILM THICKNESS OF A DROP IMPINGING ON A HEATED SURFACE , 1988 .

[37]  Liang-Shih Fan,et al.  Discrete simulation of gas‐liquid bubble columns and gas‐liquid‐solid fluidized beds , 2004 .

[38]  Ye-Mon Chen,et al.  Bubble breakage mechanisms due to collision with a particle in liquid medium , 1989 .

[39]  Gerhart Eigenberger,et al.  Applicability of the standard k–ε turbulence model to the dynamic simulation of bubble columns: Part I. Detailed numerical simulations , 1999 .

[40]  R. Verzicco,et al.  Combined Immersed-Boundary Finite-Difference Methods for Three-Dimensional Complex Flow Simulations , 2000 .

[41]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[42]  Gerhart Eigenberger,et al.  Gas—liquid flow in bubble columns and loop reactors: Part I. Detailed modelling and numerical simulation , 1994 .

[43]  James M. Hyman,et al.  Numerical methods for tracking interfaces , 1984 .

[44]  C. W. Hirt,et al.  Volume of fluid (VOF) method for the dynamics of free boundaries , 1981 .

[45]  M. Lai,et al.  An Immersed Boundary Method with Formal Second-Order Accuracy and Reduced Numerical Viscosity , 2000 .

[46]  Sanjeev Chandra,et al.  Boiling of droplets on a hot surface in low gravity , 1996 .

[47]  Wei Shyy,et al.  Multiphase Dynamics in Arbitrary Geometries on Fixed Cartesian Grids , 1997 .

[48]  J. Smagorinsky,et al.  GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS , 1963 .

[49]  Yong Li,et al.  Numerical simulation of gas–liquid–solid fluidization systems using a combined CFD-VOF-DPM method: bubble wake behavior , 1999 .

[50]  L. Fan,et al.  Effect of solids concentration on evaporative liquid jets in gas-solid flows , 2000 .

[51]  Andrea Prosperetti,et al.  A Method for Particle Simulation , 2003 .

[52]  S. Osher,et al.  A level set approach for computing solutions to incompressible two-phase flow , 1994 .

[53]  Daniel D. Joseph,et al.  Direct simulation of initial value problems for the motion of solid bodies in a Newtonian fluid. Part 2. Couette and Poiseuille flows , 1994, Journal of Fluid Mechanics.

[54]  F. Harlow,et al.  Numerical Calculation of Time‐Dependent Viscous Incompressible Flow of Fluid with Free Surface , 1965 .

[55]  James J. Feng,et al.  Direct simulation of initial value problems for the motion of solid bodies in a Newtonian fluid Part 1. Sedimentation , 1994, Journal of Fluid Mechanics.

[56]  S. Chandra,et al.  On a three-dimensional volume tracking model of droplet impact , 1999 .

[57]  A. A. Amsden,et al.  Numerical calculation of almost incompressible flow , 1968 .

[58]  D. Juric,et al.  A front-tracking method for the computations of multiphase flow , 2001 .

[59]  Javad Mostaghimi,et al.  Air bubble entrapment under an impacting droplet , 2003 .

[60]  C. Crowe,et al.  The Particle-Source-In Cell (PSI-CELL) Model for Gas-Droplet Flows , 1977 .

[61]  O. Lebaigue,et al.  The second gradient method for the direct numerical simulation of liquid—vapor flows with phase change , 2001 .

[62]  N. Hatta,et al.  Deformation and Rebounding Processes of a Water Droplet Impinging on a Flat Surface Above Leidenfrost Temperature , 1996 .

[63]  Markus Bussmann,et al.  Modeling the splash of a droplet impacting a solid surface , 2000 .

[64]  L. Wachters,et al.  The heat transfer from a hot wall to impinging water drops in the spheroidal state , 1966 .

[65]  C. Avedisian,et al.  On the collision of a droplet with a solid surface , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[66]  Graeme A. Bird,et al.  Molecular Gas Dynamics , 1976 .

[67]  S. M. Richardson,et al.  Numerical simulation method for viscoelastic flows with free surfaces—fringe element generation method , 1994 .

[68]  J. Kuipers,et al.  Discrete particle simulation of bubble and slug formation in a two-dimensional gas-fluidised bed: A hard-sphere approach. , 1996 .

[69]  David F. Fletcher,et al.  A hydrodynamic and thermodynamic simulation of droplet impacts on hot surfaces, Part II: validation and applications , 2001 .

[70]  Javad Mostaghimi,et al.  Cooling effectiveness of a water drop impinging on a hot surface , 2001 .

[71]  Kenneth J. Bell,et al.  The leidenfrost phenomenon: film boiling of liquid droplets on a flat plate , 1966 .

[72]  N. Hatta,et al.  Experimental Study of Deformation Mechanism of a Water Droplet Impinging on Hot Metallic Surfaces Above the Leidenfrost Temperature , 1997 .

[73]  Gretar Tryggvason,et al.  Computations of multi-fluid flows , 1992 .