ATNAS: Automatic Termination for Neural Architecture Search

[1]  M. Yamada,et al.  Nystrom Method for Accurate and Scalable Implicit Differentiation , 2023, AISTATS.

[2]  Xiaojun Chang,et al.  DS-Net++: Dynamic Weight Slicing for Efficient Inference in CNNs and Vision Transformers , 2022, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  Xing Sun,et al.  Training-free Transformer Architecture Search , 2022, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[4]  Sagi Perel,et al.  Neural architecture search for energy-efficient always-on audio machine learning , 2022, Neural Computing and Applications.

[5]  Xiaojun Chang,et al.  ZeroNAS: Differentiable Generative Adversarial Networks Search for Zero-Shot Learning , 2021, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Frank Hutter,et al.  NAS-Bench-x11 and the Power of Learning Curves , 2021, NeurIPS.

[7]  Zhiming Ding,et al.  Delve into the Performance Degradation of Differentiable Architecture Search , 2021, CIKM.

[8]  K. H. Low,et al.  NASI: Label- and Data-agnostic Neural Architecture Search at Initialization , 2021, ICLR.

[9]  Cho-Jui Hsieh,et al.  Rethinking Architecture Selection in Differentiable NAS , 2021, ICLR.

[10]  Minghao Chen,et al.  AutoFormer: Searching Transformers for Visual Recognition , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[11]  C. Archambeau,et al.  Automatic Termination for Hyperparameter Optimization , 2021, AutoML.

[12]  Mingkui Tan,et al.  Contrastive Neural Architecture Search with Neural Architecture Comparators , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[13]  Xinyu Gong,et al.  Neural Architecture Search on ImageNet in Four GPU Hours: A Theoretically Inspired Perspective , 2021, ICLR.

[14]  Mingkui Tan,et al.  Towards Accurate and Compact Architectures via Neural Architecture Transformer , 2021, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  Nicholas D. Lane,et al.  Zero-Cost Proxies for Lightweight NAS , 2021, ICLR.

[16]  Shubhra Kanti Karmaker Santu,et al.  AutoML to Date and Beyond: Challenges and Opportunities , 2020, ACM Comput. Surv..

[17]  Junchi Yan,et al.  DARTS-: Robustly Stepping out of Performance Collapse Without Indicators , 2020, ICLR.

[18]  B. Gabrys,et al.  NATS-Bench: Benchmarking NAS Algorithms for Architecture Topology and Size , 2020, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  Yu Wang,et al.  Evaluating Efficient Performance Estimators of Neural Architectures , 2020, NeurIPS.

[20]  Mingkui Tan,et al.  Breaking the Curse of Space Explosion: Towards Efficient NAS with Curriculum Search , 2020, ICML.

[21]  Mark van der Wilk,et al.  Speedy Performance Estimation for Neural Architecture Search , 2020, NeurIPS.

[22]  Martin Wistuba,et al.  Learning to Rank Learning Curves , 2020, ICML.

[23]  Xiaojun Chang,et al.  A Comprehensive Survey of Neural Architecture Search , 2020, ACM Comput. Surv..

[24]  Hideitsu Hino,et al.  Stopping criterion for active learning based on deterministic generalization bounds , 2020, AISTATS.

[25]  Kalyanmoy Deb,et al.  Neural Architecture Transfer , 2020, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[26]  Andrew McCallum,et al.  Energy and Policy Considerations for Modern Deep Learning Research , 2020, AAAI.

[27]  Haishan Ye,et al.  MiLeNAS: Efficient Neural Architecture Search via Mixed-Level Reformulation , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[28]  Yi Yang,et al.  NAS-Bench-201: Extending the Scope of Reproducible Neural Architecture Search , 2020, ICLR.

[29]  Fabio Maria Carlucci,et al.  NAS evaluation is frustratingly hard , 2019, ICLR.

[30]  Xiangxiang Chu,et al.  Fair DARTS: Eliminating Unfair Advantages in Differentiable Architecture Search , 2019, ECCV.

[31]  F. Hutter,et al.  Understanding and Robustifying Differentiable Architecture Search , 2019, ICLR.

[32]  Wei Wang,et al.  Understanding Architectures Learnt by Cell-based Neural Architecture Search , 2019, ICLR.

[33]  Hao Chen,et al.  Memory-Efficient Hierarchical Neural Architecture Search for Image Denoising , 2019, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[34]  Chuang Gan,et al.  Once for All: Train One Network and Specialize it for Efficient Deployment , 2019, ICLR.

[35]  Kaiyong Zhao,et al.  AutoML: A Survey of the State-of-the-Art , 2019, Knowl. Based Syst..

[36]  Noah A. Smith,et al.  Green AI , 2019, 1907.10597.

[37]  Bo Zhang,et al.  FairNAS: Rethinking Evaluation Fairness of Weight Sharing Neural Architecture Search , 2019, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[38]  Manfred K. Warmuth,et al.  Robust Bi-Tempered Logistic Loss Based on Bregman Divergences , 2019, NeurIPS.

[39]  Kian Hsiang Low,et al.  Bayesian Optimization Meets Bayesian Optimal Stopping , 2019, ICML.

[40]  Qi Tian,et al.  Progressive Differentiable Architecture Search: Bridging the Depth Gap Between Search and Evaluation , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[41]  Martin Jaggi,et al.  Evaluating the Search Phase of Neural Architecture Search , 2019, ICLR.

[42]  Ameet Talwalkar,et al.  Random Search and Reproducibility for Neural Architecture Search , 2019, UAI.

[43]  Michael Bloodgood,et al.  Stopping Active Learning Based on Predicted Change of F Measure for Text Classification , 2019, 2019 IEEE 13th International Conference on Semantic Computing (ICSC).

[44]  Min Sun,et al.  InstaNAS: Instance-aware Neural Architecture Search , 2018, AAAI.

[45]  Liang Lin,et al.  SNAS: Stochastic Neural Architecture Search , 2018, ICLR.

[46]  Song Han,et al.  ProxylessNAS: Direct Neural Architecture Search on Target Task and Hardware , 2018, ICLR.

[47]  Tie-Yan Liu,et al.  Neural Architecture Optimization , 2018, NeurIPS.

[48]  Aaron Klein,et al.  BOHB: Robust and Efficient Hyperparameter Optimization at Scale , 2018, ICML.

[49]  Quoc V. Le,et al.  Understanding and Simplifying One-Shot Architecture Search , 2018, ICML.

[50]  Yiming Yang,et al.  DARTS: Differentiable Architecture Search , 2018, ICLR.

[51]  Quoc V. Le,et al.  Efficient Neural Architecture Search via Parameter Sharing , 2018, ICML.

[52]  Wei Wu,et al.  Practical Block-Wise Neural Network Architecture Generation , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[53]  Theodore Lim,et al.  SMASH: One-Shot Model Architecture Search through HyperNetworks , 2017, ICLR.

[54]  Vijay Vasudevan,et al.  Learning Transferable Architectures for Scalable Image Recognition , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[55]  Ramesh Raskar,et al.  Accelerating Neural Architecture Search using Performance Prediction , 2017, ICLR.

[56]  Aaron Klein,et al.  Towards Automatically-Tuned Neural Networks , 2016, AutoML@ICML.

[57]  Aaron Klein,et al.  Learning Curve Prediction with Bayesian Neural Networks , 2016, ICLR.

[58]  Kevin G. Jamieson,et al.  Hyperband: Bandit-Based Configuration Evaluation for Hyperparameter Optimization , 2016, ICLR.

[59]  Ramesh Raskar,et al.  Designing Neural Network Architectures using Reinforcement Learning , 2016, ICLR.

[60]  Quoc V. Le,et al.  Neural Architecture Search with Reinforcement Learning , 2016, ICLR.

[61]  Jakob Verbeek,et al.  Convolutional Neural Fabrics , 2016, NIPS.

[62]  Frank Hutter,et al.  Speeding Up Automatic Hyperparameter Optimization of Deep Neural Networks by Extrapolation of Learning Curves , 2015, IJCAI.

[63]  Wojciech Zaremba,et al.  An Empirical Exploration of Recurrent Network Architectures , 2015, ICML.

[64]  Benjamin Van Roy,et al.  An Information-Theoretic Analysis of Thompson Sampling , 2014, J. Mach. Learn. Res..

[65]  David D. Cox,et al.  Making a Science of Model Search: Hyperparameter Optimization in Hundreds of Dimensions for Vision Architectures , 2013, ICML.

[66]  Fei-Fei Li,et al.  ImageNet: A large-scale hierarchical image database , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[67]  K. Vijay-Shanker,et al.  A Method for Stopping Active Learning Based on Stabilizing Predictions and the Need for User-Adjustable Stopping , 2009, CoNLL.

[68]  Kenneth O. Stanley,et al.  A Hypercube-Based Encoding for Evolving Large-Scale Neural Networks , 2009, Artificial Life.

[69]  Dario Floreano,et al.  Neuroevolution: from architectures to learning , 2008, Evol. Intell..

[70]  Risto Miikkulainen,et al.  Evolving Neural Networks through Augmenting Topologies , 2002, Evolutionary Computation.

[71]  Shun-ichi Amari,et al.  Natural Gradient Works Efficiently in Learning , 1998, Neural Computation.

[72]  Harold J. Kushner,et al.  A New Method of Locating the Maximum Point of an Arbitrary Multipeak Curve in the Presence of Noise , 1964 .

[73]  I. Takeuchi,et al.  A stopping criterion for Bayesian optimization by the gap of expected minimum simple regrets , 2023, AISTATS.

[74]  Samin Ishtiaq,et al.  NAS-Bench-ASR: Reproducible Neural Architecture Search for Speech Recognition , 2021, ICLR.

[75]  Cheng Li,et al.  Regret for Expected Improvement over the Best-Observed Value and Stopping Condition , 2017, ACML.

[76]  Lutz Prechelt,et al.  Early Stopping-But When? , 1996, Neural Networks: Tricks of the Trade.

[77]  Peter J. Angeline,et al.  An evolutionary algorithm that constructs recurrent neural networks , 1994, IEEE Trans. Neural Networks.

[78]  Yoshua Bengio,et al.  Série Scientifique Scientific Series Inference for the Generalization Error , 2022 .