Emergent computation and the modeling and management of ecological systems

Abstract This paper introduces the emergent computational paradigm, discusses its applicability and potential in ecosystem management, and reviews the literature. Emergent computation is significantly different from the “classic” computational paradigm, where control is top-down and centralized. In emergent systems, overall system dynamics emerge from the local interactions of independent agents. In such systems, overall global control is minimized or eliminated altogether. Applications in ecosystem management include use of “artificial ecosystems” as surrogate experimental systems, and genetics-based machine learning systems to evolve management rule-sets for complex domains. Cellular automata, neural networks, genetic algorithms and classifier systems are discussed as examples of the emergent approach. Finally, an in-depth literature review of artificial ecosystems is provided.

[1]  Herman H. Shugart,et al.  17. Simulators as Models of Forest Dynamics , 1989 .

[2]  Kent V. Flannery,et al.  Guilá Naquitz , 2021, Encyclopedic Dictionary of Archaeology.

[3]  Lawrence. Davis,et al.  Handbook Of Genetic Algorithms , 1990 .

[4]  A. Lindenmayer Mathematical models for cellular interactions in development. I. Filaments with one-sided inputs. , 1968, Journal of theoretical biology.

[5]  Stewart W. Wilson The Genetic Algorithm and Biological Development , 1987, ICGA.

[6]  Narendra S. Goel,et al.  Movable Finite Automata (MFA): A New Tool for Computer Modeling of Living Systems , 1987, ALIFE.

[7]  John H. Miller,et al.  Emergent behavior in classifier systems , 1990 .

[8]  Christopher G. Langton,et al.  Computation at the edge of chaos: Phase transitions and emergent computation , 1990 .

[9]  Kent B. Downing,et al.  AI Methods in Support of Forest Science: Modeling Endemic Level Mountain Pine Beetle Population Dynamics , 1991 .

[10]  Melanie Mitchell,et al.  The emergence of understanding in a computer model of concepts analogy-making , 1990 .

[11]  Pablo Tamayo,et al.  Cellular Automata, Reaction-Diffusion Systems, and the Origin of Life , 1987, ALIFE.

[12]  David H. Ackley,et al.  Interactions between learning and evolution , 1991 .

[13]  W. Daniel Hillis,et al.  The connection machine , 1985 .

[14]  P. Hogeweg Cellular automata as a paradigm for ecological modeling , 1988 .

[15]  G. Gertner,et al.  Modeling red pine tree survival with an artificial neural network , 1991 .

[16]  G. Rabatel,et al.  Plant grading by vision using neural networks and statistics , 1993 .

[17]  Thomas B. Starr,et al.  Hierarchy: Perspectives for Ecological Complexity , 1982 .

[18]  David R. Jefferson,et al.  Lek formation by female choice: a simulation study , 1990 .

[19]  Howard H. Pattee,et al.  Simulations, Realizations, and Theories of Life , 1987, ALIFE.

[20]  Aristid Lindenmayer,et al.  Adding Continuous Components to L-Systems , 1974, L Systems.

[21]  M. Conrad,et al.  Evolution experiments with an artificial ecosystem. , 1970, Journal of theoretical biology.

[22]  Sam Kwong,et al.  Genetic algorithms and their applications , 1996, IEEE Signal Process. Mag..

[23]  David E. Goldberg,et al.  Genetic Algorithms with Sharing for Multimodalfunction Optimization , 1987, ICGA.

[24]  R. Sequeira,et al.  Automating the parameterization of mathematical models using genetic algorithms , 1994 .

[25]  D. DeAngelis,et al.  New Computer Models Unify Ecological TheoryComputer simulations show that many ecological patterns can be explained by interactions among individual organisms , 1988 .

[26]  P. Hogeweg,et al.  Socioinformatic processes: MIRROR modelling methodology , 1985 .

[27]  John R. Anderson,et al.  MACHINE LEARNING An Artificial Intelligence Approach , 2009 .

[28]  H Lemmon,et al.  Comax: An Expert System for Cotton Crop Management , 1986, Science.

[29]  D.E. Goldberg,et al.  Classifier Systems and Genetic Algorithms , 1989, Artif. Intell..

[30]  A. M. Assad,et al.  Emergent colonization in an artificial ecology , 1992 .

[31]  Robert M. May,et al.  Perspectives in Ecological Theory , 1989 .

[32]  J. M. McKinion,et al.  Interfacing issues for GOSSYM/COMAX/WHIMS , 1992 .

[33]  Stephanie Forrest,et al.  Emergent computation: self-organizing, collective, and cooperative phenomena in natural and artificial computing networks , 1990 .

[34]  John E. W. Mayhew,et al.  Computer simulation of an animal environment , 1991 .

[35]  John H. Holland,et al.  Escaping brittleness: the possibilities of general-purpose learning algorithms applied to parallel rule-based systems , 1995 .

[36]  Guy Theraulaz,et al.  Task differentiation in Polistes wasp colonies: a model for self-organizing groups of robots , 1991 .

[37]  Charles E. Taylor,et al.  Artificial Life II , 1991 .

[38]  James L. McClelland,et al.  Parallel distributed processing: explorations in the microstructure of cognition, vol. 1: foundations , 1986 .

[39]  Bill Coderre,et al.  Modeling Behavior in Petworld , 1987, ALIFE.

[40]  M. Saunders,et al.  Computer-Assisted Decision-Making as Applied to Entomology , 1987 .

[41]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[42]  H. M. Rauscher,et al.  Enhancing the Scientific Process with Artificial Intelligence: Forest Science Applications , 1991 .

[43]  Conrad Schneiker,et al.  Nanotechnology with Feynman Machines: Scanning Tunneling Engineering and Artificial Life , 1987, ALIFE.

[44]  M. Rizki,et al.  Evolve III: a discrete events model of an evolutionary ecosystem. , 1985, Bio Systems.

[45]  R. C. Harrell,et al.  Machine vision based analysis and harvest of somatic embryos , 1993 .

[46]  M. Rizki,et al.  Computing the theory of evolution , 1986 .

[47]  M Conrad,et al.  Evolve II: a computer model of an evolving ecosystem. , 1985, Bio Systems.

[48]  Timothy C. Haas,et al.  A Bayesian belief network advisory system for aspen regeneration , 1991 .

[49]  F. D. Whisler,et al.  Application of the GOSSYM/COMAX system to cotton crop management , 1989 .

[50]  William E. Grant,et al.  AN ARTIFICIAL INTELLIGENCE MODELLING APPROACH TO SIMULATING ANIMAL/HABITAT INTERACTIONS , 1988 .

[51]  R. O'Neill A Hierarchical Concept of Ecosystems. , 1986 .

[52]  Robert M. May,et al.  22. The Population Biology of Host-Parasite and Host-Parasitoid Associations , 1989 .

[53]  Arthur W. Burks,et al.  Essays on cellular automata , 1970 .

[54]  Richard S. Rosenberg,et al.  Stimulation of genetic populations with biochemical properties: I. The model , 1970 .

[55]  Pierce H. Jones Agricultural applications of expert systems concepts , 1989 .

[56]  S. G. Tzafestas,et al.  Methodology in Systems Modelling and Simulation , 1982, IEEE Transactions on Systems, Man, and Cybernetics.

[57]  R. L. Olson,et al.  A framework for modeling uncertain reasoning in ecosystem management. II. Bayesian belief networks , 1990 .

[58]  Nicholas D. Stone CHAOS IN AN INDIVIDUAL-LEVEL PREDATOR-PREY MODEL , 1990 .

[59]  Daniel L. Schmoldt,et al.  Simulation of Plant Physiological Process Using Fuzzy Variables , 1991 .

[60]  Richard S. Rosenberg,et al.  Simulation of genetic populations with biochemical properties. II. Selection of crossover probabilities. , 1970 .

[61]  Steen Rasmussen,et al.  The coreworld: emergence and evolution of cooperative structures in a computational chemistry , 1990 .

[62]  Glyn M. Rimmington,et al.  Modelling plant growth and development , 1986 .

[63]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[64]  Stephanie Forrest,et al.  Analogies with immunology represent an important step toward the vision of robust, distributed protection for computers. , 1991 .

[65]  Jean-Arcady Meyer,et al.  From Animals to Animats: Proceedings of The First International Conference on Simulation of Adaptive Behavior (Complex Adaptive Systems) , 1990 .

[66]  Peter M. Todd,et al.  On the Sympatric Origin of Species: Mercurial Mating in the Quicksilver Model , 1991, ICGA.

[67]  Roy A. Maxion,et al.  Toward diagnosis as an emergent behavior in a network ecosystem , 1990 .

[68]  Q. Yang,et al.  Classification of apple surface features using machine vision and neural networks , 1993 .

[69]  Marek W. Lugowski Computational Metabolism: Towards Biological Geometries for Computing , 1987, ALIFE.

[70]  Ronaldo A. Sequeira,et al.  An emergent computational approach to the study of ecosystem dynamics , 1995 .

[71]  F. Varela,et al.  Toward a Practice of Autonomous Systems: Proceedings of the First European Conference on Artificial Life , 1992 .

[72]  Paulien Hogeweg,et al.  Mirror Beyond Mirror: Puddles of Life , 1987, ALIFE.

[73]  Tommaso Toffoli,et al.  Cellular automata machines - a new environment for modeling , 1987, MIT Press series in scientific computation.