Correlation Functions of Random Matrix Ensembles Related to Classical Orthogonal Polynomials. III

In the theory of level statistics, the statistical properties of energy levels are obtained from the correlation functions of random matrix ensembles. A class of matrix ensembles, which are related to classical orthogonal polynomials, has extensively been investigated in the case of complex hermitian random matrices. We systematically evaluate the correlation functions of the random matrix ensembles in all the three cases of complex hermitian, real symmetric and self-dual quaternion random matrices.

[1]  M. L. Mehta,et al.  A note on correlations between eigenvalues of a random matrix , 1971 .

[2]  J. Verbaarschot,et al.  Quantum spectra of classically chaotic systems without time reversal invariance , 1985 .

[3]  R. Balian Random matrices and information theory , 1968 .

[4]  F. Dyson A Class of Matrix Ensembles , 1972 .

[5]  Harvey S. Leff,et al.  Class of Ensembles in the Statistical Theory of Energy‐Level Spectra , 1964 .

[6]  Thermodynamics of Particle Systems Related to Random Matrices , 1991 .

[7]  Correlation between eigenvalues of random matrices , 1975 .

[8]  Allan N. Kaufman,et al.  Spectrum and Eigenfunctions for a Hamiltonian with Stochastic Trajectories , 1979 .

[9]  B. V. Bronk,et al.  Exponential Ensemble for Random Matrices , 1965 .

[10]  Multicritical points of unoriented random surfaces , 1991 .

[11]  P. B. Kahn,et al.  Higher Order Spacing Distributions for a Class of Unitary Ensembles , 1964 .

[12]  M. Mehta A note on certain multiple integrals , 1976 .

[13]  E. Wigner,et al.  On the statistical distribution of the widths and spacings of nuclear resonance levels , 1951, Mathematical Proceedings of the Cambridge Philosophical Society.

[14]  F. Dyson Correlations between eigenvalues of a random matrix , 1970 .

[15]  P. A. Mello,et al.  Random matrix physics: Spectrum and strength fluctuations , 1981 .

[16]  Michael V Berry,et al.  Statistics of energy levels without time-reversal symmetry: Aharonov-Bohm chaotic billiards , 1986 .

[17]  M. Berry Quantizing a classically ergodic system: Sinai's billiard and the KKR method , 1981 .