Demonstration of ultrarapid interfacial formation of 1D fullerene nanorods with photovoltaic properties.

We demonstrate ultrarapid interfacial formation of one-dimensional (1D) single-crystalline fullerene C60 nanorods at room temperature in 5 s. The nanorods of ∼ 11 μm in length and ∼ 215 nm in diameter are developed in a hexagonal close-pack crystal structure, contrary to the cubic crystal structure of pristine C60. Vibrational and electronic spectroscopy provide strong evidence that the nanorods are a van der Waals solid, as evidenced from the preservation of the electronic structure of the C60 molecules within the rods. Steady state optical spectroscopy reveals a dominance of charge transfer excitonic transitions in the nanorods. A significant enhancement of photogenerated charge carriers is observed in the nanorods in comparison to pristine C60, revealing the effect of shape on the photovoltaic properties. Due to their ultrarapid, large-scale, room-temperature synthesis with single-crystalline structure and excellent optoelectronic properties, the nanorods are expected to be promising for photosensitive devices applications.

[1]  S. R. Silva,et al.  Structural and optoelectronic properties of C60 rods obtained via a rapid synthesis route , 2006 .

[2]  K. Chiu,et al.  Diffusion of O2 in C60 crystal by measuring the decay of electrical conductivity , 2004 .

[3]  P. Eklund,et al.  Electrical and Thermal Properties of C60‐filled Single Wall Carbon Nanotubes , 2002 .

[4]  Nazario Martin,et al.  Materials for organic solar cells: the C60/pi-conjugated oligomer approach. , 2005, Chemical Society reviews.

[5]  Woo-Sik Kim,et al.  Synthesis and Characterization of Various-Shaped C60 Microcrystals Using Alcohols As Antisolvents , 2010 .

[6]  G. Zou,et al.  Highly Enhanced Luminescence from Single-Crystalline C60·1m-xylene Nanorods , 2006 .

[7]  Ji-hoon Kim,et al.  Fullerene derivatives as electron acceptors for organic photovoltaic cells. , 2014, Journal of Nanoscience and Nanotechnology.

[8]  Ya‐Ping Sun,et al.  Fluorescence spectra and quantum yields of buckminsterfullerene (C60) in room-temperature solutions. No excitation wavelength dependence , 1993 .

[9]  J. Winter,et al.  Raman Scattering in C60 fullerenes and fullerides , 1994 .

[10]  Prashant V Kamat,et al.  Quantum dot solar cells. Electrophoretic deposition of CdSe-C60 composite films and capture of photogenerated electrons with nC60 cluster shell. , 2008, Journal of the American Chemical Society.

[11]  Jae Kwan Lee,et al.  Functionalized methanofullerenes used as n-type materials in bulk-heterojunction polymer solar cells and in field-effect transistors. , 2008, Journal of the American Chemical Society.

[12]  S. Sinogeikin,et al.  Long-Range Ordered Carbon Clusters: A Crystalline Material with Amorphous Building Blocks , 2012, Science.

[13]  R. Curry,et al.  Ultrahigh Performance C60 Nanorod Large Area Flexible Photoconductor Devices via Ultralow Organic and Inorganic Photodoping , 2014, Scientific Reports.

[14]  D. Guldi Fullerenes: three dimensional electron acceptor materials , 2000 .

[15]  Bowen Zhu,et al.  Programmable Photo‐Electrochemical Hydrogen Evolution Based on Multi‐Segmented CdS‐Au Nanorod Arrays , 2014, Advanced materials.

[16]  Wuzong Zhou,et al.  Crystal structure and growth mechanism of unusually long fullerene (C60) nanowires. , 2008, Journal of the American Chemical Society.

[17]  K. Kitazawa,et al.  Electrical conductivity of a pure C60 single crystal , 1992 .

[18]  Zhenan Bao,et al.  High-mobility field-effect transistors from large-area solution-grown aligned C60 single crystals. , 2012, Journal of the American Chemical Society.

[19]  M. I. Ferguson,et al.  Temperature dependence of photoconductivity in buckminsterfullerene films , 1992 .

[20]  A. Fujiwara,et al.  Conductivity and field effect transistor of La2@C80 metallofullerene. , 2003, Journal of the American Chemical Society.

[21]  H. Möhwald,et al.  Recent progress in morphology control of supramolecular fullerene assemblies and its applications. , 2010, Chemical Society reviews.

[22]  J. Klinowski,et al.  Solid-State NMR Studies of Fullerene C60/Benzene Solvates , 1997 .

[23]  G. Lorusso,et al.  Photoluminescence spectra of C60 thin films deposited on different substrates , 1997 .

[24]  H. Shin,et al.  Highly selective synthesis of C60 disks on graphite substrate by a vapor-solid process. , 2008, Angewandte Chemie.

[25]  H. Nakanishi,et al.  Thermal-induced shape transformation of solvated C60 microcrystals , 2013 .

[26]  Moumita Rana,et al.  Kinetically stabilized C60–toluene solvate nanostructures with a discrete absorption edge enabling supramolecular topotactic molecular exchange , 2014 .

[27]  G. Zou,et al.  Synthesis of Thin, Rectangular C60 Nanorods Using m‐Xylene as a Shape Controller , 2006 .

[28]  Katsuhiko Ariga,et al.  Fullerene crystals with bimodal pore architectures consisting of macropores and mesopores. , 2013, Journal of the American Chemical Society.

[29]  Katsuhiko Ariga,et al.  Fullerene nanoarchitectonics: from zero to higher dimensions. , 2013, Chemistry, an Asian journal.

[30]  Lei Jiang,et al.  Imaging as-grown [60]fullerene nanotubes by template technique. , 2002, Journal of the American Chemical Society.

[31]  V. Rao,et al.  Strain induced anisotropic effect on electron mobility in C60 based organic field effect transistors , 2012 .

[32]  A. Troisi,et al.  What Makes Fullerene Acceptors Special as Electron Acceptors in Organic Solar Cells and How to Replace Them , 2013, Advanced materials.

[33]  K. Miyazawa,et al.  Buckling of C60 whiskers , 2006 .

[34]  K. Miyazawa,et al.  Solvated structure of C60 nanowhiskers , 2005 .

[35]  Katsuhiko Ariga,et al.  Surfactant-assisted assembly of fullerene (C60) nanorods and nanotubes formed at a liquid-liquid interface. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[36]  Hsin‐Lung Chen,et al.  Highly Efficient P3HT: C60 Solar Cell Free of Annealing Process , 2011 .

[37]  Hamed,et al.  Effects of oxygen and illumination on the in situ conductivity of C60 thin films. , 1993, Physical review. B, Condensed matter.

[38]  H. Nakanishi,et al.  Fullerene Fine Crystals with Unique Shapes and Controlled Size , 2009 .

[39]  G. Jing,et al.  Electrical conductivity of a single C60 nanotube , 2005 .

[40]  J. Boeyens,et al.  Static disorder in hexagonal crystal structures of C60 at 100 K and 20 K , 1996 .

[41]  Kun'ichi Miyazawa,et al.  C_60 Nanowhiskers Formed by the Liquid–liquid Interfacial Precipitation Method , 2002 .

[42]  Karl Leo,et al.  An all C60 vertical transistor for high frequency and high current density applications , 2012 .

[43]  Guanghua Chen,et al.  Effects of annealing on the electrical conductivity of C60 films , 1995 .

[44]  H. Choi,et al.  The critical effect of solvent geometry on the determination of fullerene (C60) self-assembly into dot, wire and disk structures. , 2009, Chemical communications.

[45]  Katsuhiko Ariga,et al.  Alcohol-induced decomposition of Olmstead's crystalline Ag(I)-fullerene heteronanostructure yields 'bucky cubes'† , 2013 .

[46]  Katsuhiko Ariga,et al.  Bioactive nanocarbon assemblies: Nanoarchitectonics and applications , 2014 .

[47]  Wang,et al.  Optical absorption and photoluminescence in pristine and photopolymerized C60 solid films. , 1995, Physical review. B, Condensed matter.

[48]  Marappan Sathish,et al.  Nanoporous Fullerene Nanowhiskers , 2007 .

[49]  A. Amassian,et al.  Importance of the donor:fullerene intermolecular arrangement for high-efficiency organic photovoltaics. , 2014, Journal of the American Chemical Society.

[50]  J. Tamarit,et al.  Decagonal C60 crystals grown from n-hexane solutions: solid-state and aging studies , 2000 .

[51]  K. Kojima,et al.  Photo-assisted growth and polymerization of C60 ‘nano’whiskers , 2003 .

[52]  Jean-Luc Brédas,et al.  Exciton-dissociation and charge-recombination processes in pentacene/C60 solar cells: theoretical insight into the impact of interface geometry. , 2009, Journal of the American Chemical Society.

[53]  D. Vuillaume,et al.  Synthesis and electrical properties of fullerene-based molecular junctions on silicon substrate , 2010, 1003.1371.

[54]  Yang Yang,et al.  Patterning organic single-crystal transistor arrays , 2006, Nature.

[55]  T. Wågberg,et al.  On the fabrication of crystalline C60 nanorod transistors from solution , 2012, Nanotechnology.

[56]  Yi Wang Photophysical properties of fullerenes and fullerene/N,N-diethylaniline charge-transfer complexes , 1992 .

[57]  D. Bouchard,et al.  Temporal changes in Aqu/C60 physical-chemical, deposition, and transport characteristics in aqueous systems. , 2011, Environmental science & technology.

[58]  Katsuhiko Ariga,et al.  Solvent engineering for shape-shifter pure fullerene (C60). , 2009, Journal of the American Chemical Society.

[59]  N. Armstrong,et al.  Selective Interlayers and Contacts in Organic Photovoltaic Cells. , 2011, The journal of physical chemistry letters.

[60]  Katsuhiko Ariga,et al.  Fullerene Nanoarchitectonics: From Zero to Higher Dimensions , 2013 .

[61]  T. Suga,et al.  Structural investigation of the C_60/C_70 whiskers fabricated by forming liquid–liquid interfaces of toluene with dissolved C_60/C_70 and isopropyl alcohol , 2003 .

[62]  Kizuka Tokushi,et al.  Buckling of C 60 whiskers 著者 , 2006 .

[63]  Liduo Wang,et al.  High‐Performance Organic Optocouplers Based on a Photosensitive Interfacial C60/NPB Heterojunction , 2009 .