Subunit Rotation of Vacuolar-type Proton Pumping ATPase

Vacuolar-type ATPases V1V0 (V-ATPases) are found ubiquitously in the endomembrane organelles of eukaryotic cells. In this study, we genetically introduced a His tag and a biotin tag onto the c and G subunits, respectively, of Saccharomyces cerevisiae V-ATPase. Using this engineered enzyme, we observed directly the continuous counter-clockwise rotation of an actin filament attached to the G subunit when the enzyme was immobilized on a glass surface through the c subunit. V-ATPase generated essentially the same torque as the F-ATPase (ATP synthase). The rotation was inhibited by concanamycin and nitrate but not by azide. These results demonstrated that the V- and F-ATPase carry out a common rotational catalysis.

[1]  J. Cronan Biotination of proteins in vivo. A post-translational modification to label, purify, and study proteins. , 1990, The Journal of biological chemistry.

[2]  K. Altendorf,et al.  Concanamycin A, the Specific Inhibitor of V-ATPases, Binds to the Vo Subunit c* , 2002, The Journal of Biological Chemistry.

[3]  M. Futai,et al.  A human gene, ATP6E1, encoding a testis-specific isoform of H(+)-ATPase subunit E. , 2002, Gene.

[4]  Y. Moriyama,et al.  Molecular cloning of cDNA encoding the 16 KDa subunit of vacuolar H(+)-ATPase from mouse cerebellum. , 1991, Biochemical and biophysical research communications.

[5]  T. Yanagida,et al.  Mechanical rotation of the c subunit oligomer in ATP synthase (F0F1): direct observation. , 1999, Science.

[6]  M. Futai,et al.  Diversity of mouse proton-translocating ATPase: presence of multiple isoforms of the C, d and G subunits. , 2003, Gene.

[7]  T. Noumi,et al.  Mutational analysis of yeast vacuolar H(+)-ATPase. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[8]  P. Kane,et al.  Novel Vacuolar H+-ATPase Complexes Resulting from Overproduction of Vma5p and Vma13p* , 2002, The Journal of Biological Chemistry.

[9]  Y. Moriyama,et al.  Luminal acidification of diverse organelles by V-ATPase in animal cells. , 2000, The Journal of experimental biology.

[10]  W. Wickner,et al.  Remodeling of organelle-bound actin is required for yeast vacuole fusion , 2002, The Journal of cell biology.

[11]  M. Futai,et al.  Biological nano motor, ATP synthase FoF1: from catalysis to γϵc10–12 subunit assembly rotation , 2000 .

[12]  Y. Moriyama,et al.  Kinetic studies of chromaffin granule H+-ATPase and effects of bafilomycin A1. , 1990, Biochemical and biophysical research communications.

[13]  A. Yamamoto,et al.  Differential Localization of the Vacuolar H+ Pump with G Subunit Isoforms (G1 and G2) in Mouse Neurons* , 2002, The Journal of Biological Chemistry.

[14]  Kazuhiko Kinosita,et al.  Direct observation of the rotation of F1-ATPase , 1997, Nature.

[15]  E. J. Bowman,et al.  Mutations in Subunit c of the Vacuolar ATPase Confer Resistance to Bafilomycin and Identify a Conserved Antibiotic Binding Site* , 2002, The Journal of Biological Chemistry.

[16]  H. Taguchi,et al.  V-Type H+-ATPase/Synthase from a Thermophilic Eubacterium, Thermus Thermophilus , 2000, The Journal of Biological Chemistry.

[17]  T. Nishi,et al.  The vacuolar (H+)-ATPases — nature's most versatile proton pumps , 2002, Nature Reviews Molecular Cell Biology.

[18]  A. Yamamoto,et al.  A Proton Pump ATPase with Testis-specific E1-Subunit Isoform Required for Acrosome Acidification* , 2002, The Journal of Biological Chemistry.

[19]  A. Yamamoto,et al.  From Lysosomes to the Plasma Membrane , 2003, Journal of Biological Chemistry.

[20]  Beth S. Lee,et al.  Interaction between Vacuolar H+-ATPase and Microfilaments during Osteoclast Activation* , 1999, The Journal of Biological Chemistry.

[21]  Paola Turina,et al.  H+/ATP ratio of proton transport‐coupled ATP synthesis and hydrolysis catalysed by CF0F1—liposomes , 2003, The EMBO journal.

[22]  Beth S. Lee,et al.  The Amino-terminal Domain of the B Subunit of Vacuolar H+-ATPase Contains a Filamentous Actin Binding Site* , 2000, The Journal of Biological Chemistry.

[23]  J. Zhang,et al.  Proton conduction and bafilomycin binding by the V0 domain of the coated vesicle V-ATPase. , 1994, The Journal of biological chemistry.

[24]  P. Boyer,et al.  The binding change mechanism for ATP synthase--some probabilities and possibilities. , 1993, Biochimica et biophysica acta.

[25]  T. Stevens,et al.  Structure, function and regulation of the vacuolar (H+)-ATPase. , 1997, Annual review of cell and developmental biology.

[26]  K. Schumacher,et al.  A simple nomenclature for a complex proton pump: VHA genes encode the vacuolar H(+)-ATPase. , 2002, Trends in plant science.

[27]  Y. Mukohata,et al.  HALOBACTERIAL A-ATP SYNTHASE IN RELATION TO V-ATPase. , 1992, The Journal of experimental biology.

[28]  Y. Anraku,et al.  Purification and properties of H+-translocating, Mg2+-adenosine triphosphatase from vacuolar membranes of Saccharomyces cerevisiae. , 1985, The Journal of biological chemistry.

[29]  P. Kane,et al.  Mutational Analysis of the Subunit C (Vma5p) of the Yeast Vacuolar H+-ATPase* , 2002, The Journal of Biological Chemistry.

[30]  Kiwamu Saito,et al.  The γ-subunit rotation and torque generation in F1-ATPase from wild-type or uncoupled mutant Escherichia coli , 1999 .

[31]  J. Davies,et al.  Vacuolar H(+)-pumping ATPase variable transport coupling ratio controlled by pH. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[32]  W. Junge,et al.  F‐ATPase: specific observation of the rotating c subunit oligomer of EFoEF1 , 2000, FEBS letters.

[33]  F. Supek,et al.  The SaccharomycescerevisiaeVMA10 Is an Intron-containing Gene Encoding a Novel 13-kDa Subunit of Vacuolar H+-ATPase (*) , 1995, The Journal of Biological Chemistry.

[34]  J. Baleja,et al.  Localization of subunits D, E, and G in the yeast V-ATPase complex using cysteine-mediated cross-linking to subunit B. , 2002, Biochemistry.

[35]  T. Stevens,et al.  VMA11 and VMA16 Encode Second and Third Proteolipid Subunits of the Saccharomyces cerevisiae Vacuolar Membrane H+-ATPase* , 1997, The Journal of Biological Chemistry.

[36]  P. Kane,et al.  Role of vacuolar acidification in protein sorting and zymogen activation: a genetic analysis of the yeast vacuolar proton-translocating ATPase , 1990, Molecular and cellular biology.

[37]  Hiroyasu Itoh,et al.  Resolution of distinct rotational substeps by submillisecond kinetic analysis of F1-ATPase , 2001, Nature.

[38]  J. Baleja,et al.  Cysteine-directed Cross-linking to Subunit B Suggests That Subunit E Forms Part of the Peripheral Stalk of the Vacuolar H+-ATPase* , 2002, The Journal of Biological Chemistry.

[39]  T. Nishi,et al.  Molecular Cloning and Expression of Three Isoforms of the 100-kDa a Subunit of the Mouse Vacuolar Proton-translocating ATPase* , 2000, The Journal of Biological Chemistry.

[40]  N. Hamasaki,et al.  a4, a Unique Kidney-specific Isoform of Mouse Vacuolar H+-ATPase Subunit a * , 2001, The Journal of Biological Chemistry.

[41]  T. Oka,et al.  Multiple genes for vacuolar-type ATPase proteolipids in Caenorhabditis elegans. A new gene, vha-3, has a distinct cell-specific distribution. , 1998, The Journal of biological chemistry.

[42]  R. Aggeler,et al.  Cross-linking of the δ Subunit to One of the Three α Subunits Has No Effect on Functioning, as Expected if δ Is a Part of the Stator That Links the F1 and F0 Parts of the Escherichia coli ATP Synthase* , 1997, The Journal of Biological Chemistry.

[43]  R. Sikorski,et al.  A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. , 1989, Genetics.

[44]  Jan Pieter Abrahams,et al.  Structure at 2.8 Â resolution of F1-ATPase from bovine heart mitochondria , 1994, Nature.

[45]  K. Puopolo,et al.  The 40-kDa subunit enhances but is not required for activity of the coated vesicle proton pump. , 1992, The Journal of biological chemistry.

[46]  T. Oka,et al.  Three Subunit a Isoforms of Mouse Vacuolar H+-ATPase , 2000, The Journal of Biological Chemistry.

[47]  N. Nelson,et al.  Vacuolar and plasma membrane proton-adenosinetriphosphatases. , 1999, Physiological reviews.

[48]  K. Altendorf,et al.  Inhibitory effect of modified bafilomycins and concanamycins on P- and V-type adenosinetriphosphatases. , 1993, Biochemistry.

[49]  K. Saito,et al.  ATP synthase F(1) sector rotation. Defective torque generation in the beta subunit Ser-174 to Phe mutant and its suppression by second mutations. , 2001, The Journal of biological chemistry.

[50]  S. Tsuboi,et al.  Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction , 1992, The Journal of cell biology.

[51]  T. Nishi,et al.  Transmembrane Topography of the 100-kDa a Subunit (Vph1p) of the Yeast Vacuolar Proton-translocating ATPase* , 1999, The Journal of Biological Chemistry.

[52]  T. Stevens,et al.  Molecular Characterization of the Yeast Vacuolar H+-ATPase Proton Pore* , 2000, The Journal of Biological Chemistry.

[53]  M. Futai,et al.  Rotation of a complex of the gamma subunit and c ring of Escherichia coli ATP synthase. The rotor and stator are interchangeable. , 2001, The Journal of biological chemistry.

[54]  M. Forgac,et al.  Structure of the Vacuolar ATPase by Electron Microscopy* , 1999, The Journal of Biological Chemistry.

[55]  A. Yamamoto,et al.  Subunit rotation of ATP synthase embedded in membranes: a or β subunit rotation relative to the c subunit ring , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[56]  P. Kane,et al.  Biochemical characterization of the yeast vacuolar H(+)-ATPase. , 1989, The Journal of biological chemistry.