Are micelles needed to form methane hydrates in sodium dodecyl sulfate solutions?

The possibility that methane hydrates form in sodium dodecyl sulfate (SDS) water solutions without the help of micelles formation has been investigated. To asses whether micelles are needed for the hydrate to form only one SDS molecule has been considered. To figure out the possible mechanism through which the SDS promotes the formation of methane clathrate the dynamics of CH(4) solvation in the presence and absence of the surfactant molecule is monitored. To carry out the dynamical calculations, the SDS-H(2)O, SDS-CH(4), and CH(4)-H(2)O interactions were described using a recently proposed model potential. The adopted model leverages both on the decomposition of the molecular polarizability in effective components associated with the interaction centers distributed on the molecular frame and on the use of an improved Lennard-Jones functional form to represent the effective pair interaction energies. Molecular dynamics simulations performed on such potential, contrary to some earlier assumptions, do not support mechanisms requiring the formation of micelles as suggested by the findings of more recent experiments.

[1]  Antonio Laganà,et al.  A study to improve the van der Waals component of the interaction in water clusters , 2008 .

[2]  J. Petitet,et al.  Benefits and drawbacks of clathrate hydrates: a review of their areas of interest , 2005 .

[3]  U. Essmann,et al.  Simulation of Sodium Dodecyl Sulfate at the Water−Vapor and Water−Carbon Tetrachloride Interfaces at Low Surface Coverage , 1997 .

[4]  B. Hartke,et al.  Dodecahedral clathrate structures and magic numbers in alkali cation microhydration clusters. , 2002, Chemphyschem : a European journal of chemical physics and physical chemistry.

[5]  R. L. Mancera,et al.  Computer simulation of the structural effect of pressure on the hydrophobic hydration of methane , 1999 .

[6]  Ponisseril Somasundaran,et al.  Adsorption of Sodium Dodecyl Sulfate at THF Hydrate/Liquid Interface , 2008 .

[7]  P. A. Egelstaff,et al.  An introduction to the liquid state , 1967 .

[8]  M. Albertí,et al.  Tetrahedral ordering in water: Raman profiles and their temperature dependence. , 2009, The journal of physical chemistry. A.

[9]  M. Albertí,et al.  A generalized formulation of ion-π electron interactions: role of the nonelectrostatic component and probe of the potential parameter transferability. , 2010, The journal of physical chemistry. A.

[10]  Antonio Laganà,et al.  On the development of an effective model potential to describe water interaction in neutral and ionic clusters , 2009 .

[11]  K. Kvenvolden Gas hydrates—geological perspective and global change , 1993 .

[12]  Chrystal D. Bruce,et al.  Molecular dynamics simulation of sodium dodecyl sulfate micelle in water: Micellar structural characteristics and counterion distribution , 2002 .

[13]  A Aguilar,et al.  Size-specific interaction of alkali metal ions in the solvation of M+-benzene clusters by Ar atoms. , 2007, The journal of physical chemistry. A.

[14]  P. Bishnoi,et al.  A kinetic study of methane hydrate formation , 1983 .

[15]  J. Vatamanu,et al.  Heterogeneous crystal growth of methane hydrate on its sII [001] crystallographic face. , 2008, The journal of physical chemistry. B.

[16]  E. Hammerschmidt Formation of Gas Hydrates in Natural Gas Transmission Lines , 1934 .

[17]  Margarita Albertí Rare gas-benzene-rare gas interactions: structural properties and dynamic behavior. , 2010, The journal of physical chemistry. A.

[18]  Francisco B. Pereira,et al.  An evolutionary algorithm for the global optimization of molecular clusters: application to water, benzene, and benzene cation. , 2011, The journal of physical chemistry. A.

[19]  Y. Guissani,et al.  A computer simulation study of the temperature dependence of the hydrophobic hydration , 1993 .

[20]  Fernando Pirani,et al.  Beyond the Lennard-Jones model: a simple and accurate potential function probed by high resolution scattering data useful for molecular dynamics simulations. , 2008, Physical chemistry chemical physics : PCCP.

[21]  N. Sathyamurthy,et al.  Theoretical studies of host-guest interaction in gas hydrates. , 2011, The journal of physical chemistry. A.

[22]  Sangyong Lee,et al.  Kinetics of Methane Hydrate Formation from SDS Solution , 2007 .

[23]  Antonio Laganà,et al.  A molecular dynamics study of sodium dodecyl sulfate-methane system in water using the improved lennard jones formulation , 2012 .

[24]  S. Alavi,et al.  How much carbon dioxide can be stored in the structure H clathrate hydrates?: a molecular dynamics study. , 2007, The Journal of chemical physics.

[25]  Antonio Laganà,et al.  COMPCHEM: Progress Towards GEMS a Grid Empowered Molecular Simulator and Beyond , 2010, Journal of Grid Computing.

[26]  Fernando Pirani,et al.  Range, strength and anisotropy of intermolecular forces in atom–molecule systems: an atom–bond pairwise additivity approach , 2001 .

[27]  Fernando Pirani,et al.  Benzene water interaction: From gaseous dimers to solvated aggregates , 2012 .

[28]  M. Albertí,et al.  Propensities in the solvation of M+–Benzene systems (M = Na, K, Rb) investigated by cluster dynamics , 2012 .

[29]  Antonio Laganà,et al.  Investigation of Propane and Methane Bulk Properties Structure Using Two Different Force Fields , 2008, ICCSA.

[30]  A. Soper,et al.  Methane hydrate formation and decomposition: structural studies via neutron diffraction and empirical potential structure refinement. , 2006, The Journal of chemical physics.

[31]  Antonio Laganà,et al.  Small Water Clusters: The Cases of Rare Gas-Water, Alkali Ion-Water and Water Dimer , 2008, ICCSA.

[32]  K. Yasuoka,et al.  Free-energy calculation of structure-H hydrates. , 2006, The Journal of chemical physics.

[33]  Osvaldo Gervasi,et al.  On the Structuring of the Computational Chemistry Virtual Organization COMPCHEM , 2006, ICCSA.

[34]  F Pirani,et al.  A molecular dynamics investigation of rare-gas solvated cation-benzene clusters using a new model potential. , 2005, The journal of physical chemistry. A.

[35]  Simone Arca,et al.  Surfactant promoting effects on clathrate hydrate formation : Are micelles really involved? , 2005 .

[36]  Antonio Laganà,et al.  Properties of an atom bond additive representation of the interaction for benzene argon clusters , 2004 .

[37]  Antonio Laganà,et al.  Parallel Calculation of Propane Bulk Properties , 2006, ICCSA.

[38]  Carolyn A. Koh,et al.  Natural gas hydrates: Recent advances and challenges in energy and environmental applications , 2007 .

[39]  Antonio Laganà,et al.  Ab Initio and Empirical Atom Bond Formulation of the Interaction of the Dimethylether-Ar System , 2005, ICCSA.

[40]  E. D. Sloan,et al.  Fundamental principles and applications of natural gas hydrates , 2003, Nature.

[41]  Y. Zhong,et al.  Surfactant effects on gas hydrate formation , 2000 .

[42]  M. Albertí,et al.  Dynamics of Rb+–benzene and Rb+–benzene–Arn (n ⩽ 3) clusters , 2006 .

[43]  M. Albertí,et al.  On the suitability of the ILJ function to match different formulations of the electrostatic potential for water-water interactions , 2009 .

[44]  M. Albertí,et al.  A portable intermolecular potential for molecular dynamics studies of NMA-NMA and NMA-H2O aggregates. , 2011, Physical chemistry chemical physics : PCCP.

[45]  F Pirani,et al.  From ar clustering dynamics to Ar solvation for Na+-benzene. , 2007, The journal of physical chemistry. A.

[46]  M. Albertí,et al.  Cation-pi-anion interaction in alkali ion-benzene-halogen ion clusters. , 2009, The journal of physical chemistry. A.

[47]  Fernando Pirani,et al.  Atom–bond pairwise additive representation for intermolecular potential energy surfaces , 2004 .

[48]  Antonio Laganà,et al.  A molecular dynamics study for the isomerization of Ar solvated (benzene)2–K+ heteroclusters , 2006 .

[49]  Krzysztof Szalewicz,et al.  Potential energy surface and second virial coefficient of methane-water from ab initio calculations. , 2005, The Journal of chemical physics.