Repeatability and reproducibility of optic nerve head perfusion measurements using optical coherence tomography angiography

Abstract. Optical coherence tomography angiography (OCTA) has increasingly become a clinically useful technique in ophthalmic imaging. We evaluate the repeatability and reproducibility of blood perfusion in the optic nerve head (ONH) measured using optical microangiography (OMAG)-based OCTA. Ten eyes from 10 healthy volunteers are recruited and scanned three times with a 68-kHz Cirrus HD-OCT 5000-based OMAG prototype system (Carl Zeiss Meditec Inc., Dublin, California) centered at the ONH involving two separate visits within six weeks. Vascular images are generated with OMAG processing by detecting the differences in OCT signals between consecutive B-scans acquired at the same retina location. ONH perfusion is quantified as flux, vessel area density, and normalized flux within the ONH for the prelaminar, lamina cribrosa, and the full ONH. Coefficient of variation (CV) and intraclass correlation coefficient (ICC) are used to evaluate intravisit and intervisit repeatability, and interobserver reproducibility. ONH perfusion measurements show high repeatability [CV≤3.7% (intravisit) and ≤5.2% (intervisit)] and interobserver reproducibility (ICC≤0.966) in all three layers by three metrics. OCTA provides a noninvasive method to visualize and quantify ONH perfusion in human eyes with excellent repeatability and reproducibility, which may add additional insight into ONH perfusion in clinical practice.

[1]  Ruikang K. Wang,et al.  User-guided segmentation for volumetric retinal optical coherence tomography images. , 2014, Journal of biomedical optics.

[2]  J. Fleiss The design and analysis of clinical experiments , 1987 .

[3]  L. Schmetterer,et al.  Diurnal fluctuation of ocular blood flow parameters in patients with primary open-angle glaucoma and healthy subjects , 2008, British Journal of Ophthalmology.

[4]  T. Yatagai,et al.  In vivo high-contrast imaging of deep posterior eye by 1-microm swept source optical coherence tomography and scattering optical coherence angiography. , 2007, Optics express.

[5]  A. Harris,et al.  Capillary density and retinal diameter measurements and their impact on altered retinal circulation in glaucoma: a digital fluorescein angiographic study , 2002, The British journal of ophthalmology.

[6]  G Michelson,et al.  Perfusion of the Juxtapapillary Retina and the Neuroretinal Rim Area in Primary Open Angle Glaucoma , 1996, Journal of glaucoma.

[7]  Erik L. Greve,et al.  Scanning laser Doppler flowmetry in glaucoma , 2004, International Ophthalmology.

[8]  Leopold Schmetterer,et al.  Ocular blood flow and systemic blood pressure in patients with primary open-angle glaucoma and ocular hypertension. , 2004, Investigative ophthalmology & visual science.

[9]  L. Kagemann,et al.  Vascular aspects in the pathophysiology of glaucomatous optic neuropathy. , 1999, Survey of ophthalmology.

[10]  L. Kagemann,et al.  Peripapillary retinal blood flow in normal tension glaucoma , 1999, The British journal of ophthalmology.

[11]  Ruikang K. Wang,et al.  Quantifying Optical Microangiography Images Obtained from a Spectral Domain Optical Coherence Tomography System , 2012, Int. J. Biomed. Imaging.

[12]  Ruikang K. Wang,et al.  Simultaneous estimation of bidirectional particle flow and relative flux using MUSIC-OCT: phantom studies , 2014, Physics in medicine and biology.

[13]  Leopold Schmetterer,et al.  Twelve‐hour reproducibility of retinal and optic nerve blood flow parameters in healthy individuals , 2009, Acta ophthalmologica.

[14]  Ruikang K. Wang,et al.  Optical Microangiography: A Label-Free 3-D Imaging Technology to Visualize and Quantify Blood Circulations Within Tissue Beds In Vivo , 2010, IEEE Journal of Selected Topics in Quantum Electronics.

[15]  Michael Brownlee,et al.  Diabetic Retinopathy: Targeting Vasoregression , 2011, Diabetes.

[16]  C. O'brien,et al.  A comparison of ocular blood flow in untreated primary open-angle glaucoma and ocular hypertension. , 1998, American journal of ophthalmology.

[17]  J. Grunwald,et al.  Optic nerve and choroidal circulation in glaucoma. , 1998, Investigative ophthalmology & visual science.

[18]  J. Izatt,et al.  Measurement of total blood flow in the normal human retina using Doppler Fourier-domain optical coherence tomography , 2009, British Journal of Ophthalmology.

[19]  Alejandro F. Frangi,et al.  Muliscale Vessel Enhancement Filtering , 1998, MICCAI.

[20]  Ruikang K. Wang,et al.  Swept-source OCT angiography of macular telangiectasia type 2. , 2014, Ophthalmic surgery, lasers & imaging retina.

[21]  B C Chauhan,et al.  Confocal Scanning Laser Doppler Flowmetry: Experiments in a Model Flow System , 1997, Journal of glaucoma.

[22]  B L Petrig,et al.  Laser Doppler flowmetry in the optic nerve. , 1992, Experimental eye research.

[23]  Ruikang K. Wang,et al.  Optical microangiography provides depth-resolved images of directional ocular blood perfusion in posterior eye segment. , 2010, Journal of biomedical optics.

[24]  L. Kagemann,et al.  Blood flow per unit retinal nerve fibre tissue volume is lower in the human inferior retina , 2003, The British journal of ophthalmology.

[25]  Guohua Shi,et al.  Correlation between optic disc perfusion and glaucomatous severity in patients with open-angle glaucoma: an optical coherence tomography angiography study , 2015, Graefe's Archive for Clinical and Experimental Ophthalmology.

[26]  Robert N Weinreb,et al.  Effect of Aging on Nocturnal Blood Flow in the Optic Nerve Head and Macula in Healthy Human Eyes , 2008, Journal of glaucoma.

[27]  M. Shirakashi,et al.  Measurement of microcirculation in the optic nerve head by laser speckle flowgraphy and scanning laser Doppler flowmetry. , 2000, American journal of ophthalmology.

[28]  Ruikang K. Wang,et al.  Super-resolution spectral estimation of optical micro-angiography for quantifying blood flow within microcirculatory tissue beds in vivo , 2013, Biomedical optics express.

[29]  M. Shirakashi,et al.  Measurement of microcirculation in optic nerve head by laser speckle flowgraphy in normal volunteers. , 2000, American journal of ophthalmology.

[30]  Martin F. Kraus,et al.  Optical coherence tomography angiography of optic disc perfusion in glaucoma. , 2014, Ophthalmology.

[31]  B L Petrig,et al.  Laser Doppler flowmetry and optic nerve head blood flow. , 1999, American journal of ophthalmology.

[32]  Sophie Kubach,et al.  Wide-field imaging of retinal vasculature using optical coherence tomography-based microangiography provided by motion tracking , 2015, Journal of biomedical optics.

[33]  Ruikang K. Wang,et al.  Doppler optical micro-angiography for volumetric imaging of vascular perfusion in vivo. , 2009, Optics express.

[34]  G A Cioffi,et al.  Measurement of ocular blood flow. , 2001, Journal of glaucoma.

[35]  Ruikang K. Wang,et al.  Using ultrahigh sensitive optical microangiography to achieve comprehensive depth resolved microvasculature mapping for human retina. , 2011, Journal of biomedical optics.

[36]  E. Stefánsson,et al.  The impact of ocular blood flow in glaucoma , 2002, Progress in Retinal and Eye Research.

[37]  Ruikang K. Wang,et al.  Depth-resolved imaging of capillary networks in retina and choroid using ultrahigh sensitive optical microangiography. , 2010, Optics letters.

[38]  Ruikang K. Wang In vivo volumetric blood flow imaging using optical microangiography at capillary level resolution , 2008, 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[39]  Masanori Hangai,et al.  Three-dimensional imaging of lamina cribrosa defects in glaucoma using swept-source optical coherence tomography. , 2013, Investigative ophthalmology & visual science.

[40]  J. Fleiss,et al.  Intraclass correlations: uses in assessing rater reliability. , 1979, Psychological bulletin.

[41]  J. Duker,et al.  Optical coherence tomography of age-related macular degeneration and choroidal neovascularization. , 1996, Ophthalmology.

[42]  Kei Shinoda,et al.  Decreased blood flow at neuroretinal rim of optic nerve head corresponds with visual field deficit in eyes with normal tension glaucoma , 2006, Graefe's Archive for Clinical and Experimental Ophthalmology.