Catalysis by clusters with precise numbers of atoms.

Clusters that contain only a small number of atoms can exhibit unique and often unexpected properties. The clusters are of particular interest in catalysis because they can act as individual active sites, and minor changes in size and composition--such as the addition or removal of a single atom--can have a substantial influence on the activity and selectivity of a reaction. Here, we review recent progress in the synthesis and characterization of well-defined subnanometre clusters, and the understanding and exploitation of their catalytic properties. We examine work on size-selected supported clusters in ultrahigh-vacuum environments and under realistic reaction conditions, and explore the use of computational methods to provide a mechanistic understanding of their catalytic properties. We also highlight the potential of size-selected clusters to provide insights into important catalytic processes and their use in the development of novel catalytic systems.

[1]  S. C. O'brien,et al.  C60: Buckminsterfullerene , 1985, Nature.

[2]  R. Johnston,et al.  Nanoalloys: from theory to applications of alloy clusters and nanoparticles. , 2008, Chemical reviews.

[3]  Hannu Häkkinen,et al.  Charging Effects on Bonding and Catalyzed Oxidation of CO on Au8 Clusters on MgO , 2005, Science.

[4]  E. Muetterties Molecular metal clusters. , 1977, Science.

[5]  Tianpin Wu,et al.  Electronic Structure Controls Reactivity of Size-Selected Pd Clusters Adsorbed on TiO2 Surfaces , 2009, Science.

[6]  M. Kappes,et al.  Probes for electronic and geometrical shell structure effects in alkali-metal clusters. Photoionization measurements on KxLi, KxMg and KxZn(x < 25) , 1985 .

[7]  E. Mendoza,et al.  Exceptional oxidation activity with size-controlled supported gold clusters of low atomicity. , 2013, Nature chemistry.

[8]  A. CastlemanJr. Cluster Structure and Reactions: Gaining Insights into Catalytic Processes , 2011 .

[9]  N. Browning,et al.  Nanoclusters of gold on a high-area support: almost uniform nanoclusters imaged by scanning transmission electron microscopy. , 2009, ACS nano.

[10]  Brian F. G. Johnson,et al.  High‐Performance Nanocatalysts for Single‐Step Hydrogenations , 2003 .

[11]  J. Nørskov,et al.  CO oxidation on rutile-supported au nanoparticles. , 2005, Angewandte Chemie.

[12]  Helmut Schwarz,et al.  CH and CC Bond Activation by Bare Transition‐Metal Oxide Cations in the Gas Phase , 1995 .

[13]  M. Arenz,et al.  Electrochemically induced nanocluster migration , 2010 .

[14]  Sungsik Lee,et al.  Communication: Suppression of sintering of size-selected Pd clusters under realistic reaction conditions for catalysis. , 2011, The Journal of chemical physics.

[15]  J. Bansmann,et al.  Temperature dependent magnetic spin and orbital moments of mass-filtered cobalt clusters on Au(111) , 2007 .

[16]  Tianpin Wu,et al.  Cluster size effects on hydrazine decomposition on Irn/Al2O3/NiAl(1 1 0) , 2006 .

[17]  R. Cooks,et al.  Using ambient ion beams to write nanostructured patterns for surface enhanced Raman spectroscopy. , 2014, Angewandte Chemie.

[18]  R. Methling,et al.  Magnetic studies on mass-selected iron particles , 2001 .

[19]  Wolf-Dieter Schneider,et al.  Size-dependent molecular dissociation on mass-selected, supported metal clusters , 1998 .

[20]  Cleavage of the C–O–C bond on size-selected subnanometer cobalt catalysts and on ALD-cobalt coated nanoporous membranes , 2011 .

[21]  J. Sauer,et al.  Gas-phase oxidation of propane and 1-butene with [V3O7]+: experiment and theory in concert. , 2006, Angewandte Chemie.

[22]  B. Rao,et al.  Physics of Clusters and Cluster Assemblies , 1999 .

[23]  J. Bokhoven,et al.  Interaction and Reaction of Ethylene and Oxygen on Six-Atom Silver Clusters Supported on LTA Zeolite , 2009 .

[24]  D. Lim,et al.  Comparison of electronic structures of mass-selected Ag clusters and thermally grown Ag islands on sputter-damaged graphite surfaces , 2008 .

[25]  M. Kappes,et al.  Coarsening of mass-selected Au clusters on amorphous carbon at room temperature , 2009 .

[26]  M. Moseler,et al.  Oxidation of magnesia-supported Pd-clusters leads to the ultimate limit of epitaxy with a catalytic function , 2006, Nature materials.

[27]  D. Goodman,et al.  Acetylene Hydrogenation on Au-Based Catalysts , 2003 .

[28]  Ke Deng,et al.  Experimental and theoretical study of the reactions between neutral vanadium oxide clusters and ethane, ethylene, and acetylene. , 2008, Journal of the American Chemical Society.

[29]  J. W. Elam,et al.  Increased Silver Activity for Direct Propylene Epoxidation via Subnanometer Size Effects , 2010, Science.

[30]  Winston A. Saunders,et al.  Electronic Shell Structure and Abundances of Sodium Clusters , 1984 .

[31]  Byeongdu Lee,et al.  Selective propene epoxidation on immobilized au(6-10) clusters: the effect of hydrogen and water on activity and selectivity. , 2009, Angewandte Chemie.

[32]  Sungsik Lee,et al.  Support‐dependent Performance of Size‐selected Subnanometer Cobalt Cluster‐based Catalysts in the Dehydrogenation of Cyclohexene , 2012 .

[33]  Staying Put , 2002, Science's STKE.

[34]  Ib Chorkendorff,et al.  The effect of size on the oxygen electroreduction activity of mass-selected platinum nanoparticles. , 2012, Angewandte Chemie.

[35]  L. Curtiss,et al.  Subnanometre platinum clusters as highly active and selective catalysts for the oxidative dehydrogenation of propane. , 2009, Nature materials.

[36]  H. Haberland,et al.  Irregular variations in the melting point of size-selected atomic clusters , 1998, Nature.

[37]  W. Goddard,et al.  Oxidative dehydrogenation of methanol to formaldehyde , 1985 .

[38]  Lin-Wang Wang,et al.  Break-Up of Stepped Platinum Catalyst Surfaces by High CO Coverage , 2010, Science.

[39]  G. Somorjai,et al.  Clusters, surfaces, and catalysis. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[40]  M. Haruta,et al.  Novel Gold Catalysts for the Oxidation of Carbon Monoxide at a Temperature Far Below 0°C. , 1987 .

[41]  Yang-Kook Sun,et al.  Effect of the size-selective silver clusters on lithium peroxide morphology in lithium–oxygen batteries , 2014, Nature Communications.

[42]  J. Laskin,et al.  Charge retention by gold clusters on surfaces prepared using soft landing of mass selected ions. , 2012, ACS nano.

[43]  Shiv N. Khanna,et al.  Formation of Al13I‐: Evidence for the Superhalogen Character of Al13. , 2004 .

[44]  R. Palmer,et al.  A new high transmission infinite range mass selector for cluster and nanoparticle beams , 1999 .

[45]  S. Anderson,et al.  Growth/Restructuring of Pd Clusters Induced by CO Adsorption. , 1991 .

[46]  U. Landman,et al.  Hydrogen-promoted oxygen activation by free gold cluster cations. , 2009, Journal of the American Chemical Society.

[47]  Y. Negishi,et al.  Chromatographic isolation of "missing" Au55 clusters protected by alkanethiolates. , 2006, Journal of the American Chemical Society.

[48]  A. Vollmer,et al.  Inner-shell photoionization spectroscopy on deposited metal clusters using soft x-ray synchrotron radiation: an experimental setup. , 2009, The Review of scientific instruments.

[49]  E. W. McDaniel,et al.  Electrospray Ion Source. Another Variation on the Free-Jet Theme , 1984 .

[50]  Tianpin Wu,et al.  Size-dependent oxidation of Pdn (n ⩽ 13) on alumina/NiAl(110): Correlation with Pd core level binding energies , 2009 .

[51]  K. Asmis,et al.  Structure and chemistry of the heteronuclear oxo-cluster [VPO4]•+: a model system for the gas-phase oxidation of small hydrocarbons. , 2013, Journal of the American Chemical Society.

[52]  F. Despa,et al.  Production of bimetallic clusters by a dual-target dual-laser vaporization source , 2000 .

[53]  M. Arenz,et al.  The effect of particle proximity on the oxygen reduction rate of size-selected platinum clusters. , 2013, Nature materials.

[54]  Rongchao Jin,et al.  Atomically precise gold nanoclusters as new model catalysts. , 2013, Accounts of chemical research.

[55]  U. Landman,et al.  When Gold Is Not Noble: Nanoscale Gold Catalysts. , 2010 .

[56]  Sui‐Dong Wang,et al.  Oxidation and reduction of size-selected subnanometer Pd clusters on Al2O3 surface. , 2013, The Journal of chemical physics.

[57]  Walt A. de Heer,et al.  The physics of simple metal clusters: experimental aspects and simple models , 1993 .

[58]  B. Gates,et al.  γ-Al2O3-Supported PtRu Clusters Prepared from [Pt2Ru4(CO)18]: Characterization by Infrared and Extended X-ray Absorption Fine Structure Spectroscopies , 2002 .

[59]  W. Delgass,et al.  Mechanistic implications of Aun/Ti-lattice proximity for propylene epoxidation , 2007 .

[60]  M. Arenz,et al.  Size-selected clusters as heterogeneous model catalysts under applied reaction conditions. , 2010, Physical chemistry chemical physics : PCCP.

[61]  Sungsik Lee,et al.  Simultaneous measurement of X-ray small angle scattering, absorption and reactivity: A continuous flow catalysis reactor , 2011 .

[62]  H. Schwarz,et al.  Dissociation behavior of Cu(urea)+ complexes generated by electrospray ionization , 2002 .

[63]  C. V. Haesendonck,et al.  Scanning probe microscopy investigation of gold clusters deposited on atomically flat substrates , 2003 .

[64]  G. Egea,et al.  Silver sub-nanoclusters electrocatalyze ethanol oxidation and provide protection against ethanol toxicity in cultured mammalian cells. , 2010, Journal of the American Chemical Society.

[65]  S. Bromley,et al.  Preparation and characterisation of a highly active bimetallic (Pd–Ru) nanoparticle heterogeneous catalyst† , 1999 .

[66]  S. Bonanni,et al.  Effect of the TiO2 reduction state on the catalytic CO oxidation on deposited size-selected Pt clusters. , 2012, Journal of the American Chemical Society.

[67]  A. Fortunelli,et al.  Probing the atomic structure of metallic nanoclusters with the tip of a scanning tunneling microscope. , 2014, Nanoscale.

[68]  M. Streun,et al.  Size-selected cluster beam source based on radio frequency magnetron plasma sputtering and gas condensation , 2005 .

[69]  T. Bürgi,et al.  Size exclusion chromatography for semipreparative scale separation of Au38(SR)24 and Au40(SR)24 and larger clusters. , 2011, Analytical chemistry.

[70]  H. Schwarz,et al.  Gas-phase catalysis by atomic and cluster metal ions: the ultimate single-site catalysts. , 2005, Angewandte Chemie.

[71]  Y. D. Kim,et al.  Oxidation and reduction of mass-selected Au clusters on SiO2/Si. , 2006, Chemphyschem : a European journal of chemical physics and physical chemistry.

[72]  M. Moseler,et al.  Softlanding and STM imaging of Ag 561 clusters on a C 60 monolayer , 2007 .

[73]  Y. D. Kim,et al.  Model catalysts of supported Au nanoparticles and mass-selected clusters. , 2010, Physical chemistry chemical physics : PCCP.

[74]  M. Streun,et al.  Pinning of size-selected Ag clusters on graphite surfaces , 2000 .

[75]  K. Kern,et al.  Controlled Deposition of Size-Selected Silver Nanoclusters , 1996, Science.

[76]  Eleanor E. B. Campbell,et al.  Cluster-surface interaction: From soft landing to implantation , 2011 .

[77]  M. Haruta When Gold Is Not Noble: Catalysis by Nanoparticles , 2003 .

[78]  C. Henry Catalysis by Nanoparticles , 2007 .

[79]  Y. D. Kim,et al.  Chemistry of mass-selected Au clusters deposited on sputter-damaged HOPG surfaces: The unique properties of Au8 clusters , 2007 .

[80]  H. Yasumatsu Generation of intense and cold beam of Pt-Ag bi-element cluster ions having single-composition , 2011 .

[81]  M. B. Denton,et al.  The quadrupole mass filter: Basic operating concepts , 1986 .

[82]  Yoav Sagi,et al.  The Experimental Setup , 2012 .

[83]  P. Armentrout,et al.  Metal cluster ions: the bond energy of diatomic manganese(1+) , 1983 .

[84]  D. E. Powers,et al.  Laser production of supersonic metal cluster beams , 1981 .

[85]  Stefan Vajda,et al.  Size-dependent subnanometer Pd cluster (Pd4, Pd6, and Pd17) water oxidation electrocatalysis. , 2013, ACS nano.

[86]  H. Schwarz Chemistry with methane: concepts rather than recipes. , 2011, Angewandte Chemie.

[87]  Julius Jellinek,et al.  Theory of Atomic and Molecular Clusters , 1999 .

[88]  B. Hammer,et al.  Active role of oxide support during CO oxidation at Au/MgO. , 2003, Physical review letters.

[89]  P. Fayet,et al.  Production and study of metal cluster ions , 1985 .

[90]  张涛,et al.  Single-atom catalysis of CO oxidation using Pt1 FeOx , 2011 .

[91]  R. Palmer,et al.  Size and shape of industrial Pd catalyst particles using size-selected clusters as mass standards , 2013 .

[92]  K. Meiwes-Broer,et al.  Pure metal and metal-doped rare-gas clusters grown in a pulsed ARC cluster ion source , 1990 .

[93]  William F. Schneider,et al.  Heterogeneous Catalysis at Nanoscale for Energy Applications , 2014 .

[94]  M. Moseler,et al.  Penetration of thin C60 films by metal nanoparticles. , 2010, Nature nanotechnology.

[95]  H. Metiu,et al.  Intact size-selected Au(n) clusters on a TiO2(110)-(1 x 1) surface at room temperature. , 2005, Journal of the American Chemical Society.

[96]  M. Moseler,et al.  Filling of micron‐sized contact holes with copper by energetic cluster impact , 1994 .

[97]  Zhi Wang,et al.  Controlled formation of mass-selected Cu-Au core-shell cluster beams. , 2011, Journal of the American Chemical Society.

[98]  Y. Negishi,et al.  Size Determination of Gold Clusters by Polyacrylamide Gel Electrophoresis in a Large Cluster Region , 2009 .

[99]  W. Ekardt,et al.  Dynamical Polarizability of Small Metal Particles: Self-Consistent Spherical Jellium Background Model , 1984 .

[100]  G. Pacchioni Nanocatalysis: Staying put. , 2009, Nature materials.

[101]  T. Becker,et al.  Controlled cluster condensation into preformed nanometer-sized pits , 1997 .

[102]  M. Getzlaff,et al.  Low energy impact of size selected FeCo nanoparticles with a W(1 1 0) surface , 2012 .

[103]  Š. Vajda,et al.  A first-principles theoretical approach to heterogeneous nanocatalysis. , 2012, Nanoscale.

[104]  Paolo Milani,et al.  Cluster beam deposition: a tool for nanoscale science and technology , 2006 .

[105]  M. Flytzani-Stephanopoulos,et al.  Active Nonmetallic Au and Pt Species on Ceria-Based Water-Gas Shift Catalysts , 2003, Science.

[106]  M. Kappes,et al.  Production of large sodium clusters (Nax,.x⩽65) by seeded beam expansions , 1982 .

[107]  S. Abbet,et al.  Tuning the Selectivity of Acetylene Polymerization Atom by Atom , 2001 .

[108]  M. Arenz,et al.  The polymerization of acetylene on supported metal clusters , 2006 .

[109]  K. Kaya,et al.  Structure and reactivity of bimetallic Co sub n V sub m clusters , 1990 .

[110]  H. Boyen,et al.  Nanostructured surfaces from size-selected clusters , 2003, Nature materials.

[111]  S. Anderson,et al.  Use of a quadrupole mass filter for high energy resolution ion beam production , 1995 .