Brain Activation Related to the Representations of External Space and Body Scheme in Visuomotor Control

Regional cerebral blood flow was assessed during reaching movements with either target or finger selection. Measurements were performed with positron emission tomography in normal subjects. We thus identified two patterns of cerebral activation representing parietal command functions based on either external space or body scheme information. Directing the right-hand index finger toward one target dot in an array of five was related to activations distributed over dorsal extrastriate visual cortex (putative area V3A), along the parieto-occipital sulcus (putative V6/V6A) and the posterior intraparietal sulcus (IPS). Right-hemisphere dominance was present at the occipital extension of posterior IPS. Positioning one right-hand finger of five on the middle target dot was related with anterior IPS activation, extending over the marginal gyrus of the left inferior parietal lobe. The latter indicated a parietal role in prehension, independent of the shape of the target reached for. In both conditions of the reaching task, instructions for movement were auditorily given by random numbers 1 to 5, thus excluding visual cueing. The observed lateralization of movement-related parietal functions helps to explain neurological symptoms such as ideomotor apraxia and spatial hemineglect.

[1]  R T Knight,et al.  Neural representations of skilled movement. , 2000, Brain : a journal of neurology.

[2]  M. D’Esposito,et al.  Topographical disorientation: a synthesis and taxonomy. , 1999, Brain : a journal of neurology.

[3]  R. J. Seitz,et al.  A fronto‐parietal circuit for object manipulation in man: evidence from an fMRI‐study , 1999, The European journal of neuroscience.

[4]  T. Allison,et al.  Electrophysiological studies of human face perception. I: Potentials generated in occipitotemporal cortex by face and non-face stimuli. , 1999, Cerebral cortex.

[5]  Joel R. Meyer,et al.  A large-scale distributed network for covert spatial attention: further anatomical delineation based on stringent behavioural and cognitive controls. , 1999, Brain : a journal of neurology.

[6]  Scott T. Grafton,et al.  Role of the posterior parietal cortex in updating reaching movements to a visual target , 1999, Nature Neuroscience.

[7]  A M Paans,et al.  The distribution of cerebral activity related to visuomotor coordination indicating perceptual and executional specialization. , 1999, Brain research. Cognitive brain research.

[8]  B. M. de Jong,et al.  Brain Activation Related to the Change between Bimanual Motor Programs , 1999, NeuroImage.

[9]  S. Zeki,et al.  A visuo‐somatomotor pathway through superior parietal cortex in the macaque monkey: cortical connections of areas V6 and V6A , 1998, The European journal of neuroscience.

[10]  Karl J. Friston,et al.  The functional anatomy of attention to visual motion. A functional MRI study. , 1998, Brain : a journal of neurology.

[11]  C Dohle,et al.  Human anterior intraparietal area subserves prehension , 1998, Neurology.

[12]  G. Vallar Spatial hemineglect in humans , 1998, Trends in Cognitive Sciences.

[13]  A P Batista,et al.  Posterior parietal areas specialized for eye movements (LIP) and reach (PRR) using a common coordinate frame. , 1998, Novartis Foundation symposium.

[14]  A. Dale,et al.  Functional Analysis of V3A and Related Areas in Human Visual Cortex , 1997, The Journal of Neuroscience.

[15]  R. Passingham,et al.  The left parietal cortex and motor attention , 1997, Neuropsychologia.

[16]  D. J. Felleman,et al.  Cortical connections of areas V3 and VP of macaque monkey extrastriate visual cortex , 1997, The Journal of comparative neurology.

[17]  C. Galletti,et al.  Arm Movement‐related Neurons in the Visual Area V6A of the Macaque Superior Parietal Lobule , 1997, The European journal of neuroscience.

[18]  Karl Zilles,et al.  Architecture, Connectivity, and Transmitter Receptors of Human Extrastriate Visual Cortex , 1997 .

[19]  Paul B. Johnson,et al.  Premotor and parietal cortex: corticocortical connectivity and combinatorial computations. , 1997, Annual review of neuroscience.

[20]  M Jeannerod,et al.  Visual pathways for object-oriented action and object recognition: functional anatomy with PET. , 1997, Cerebral cortex.

[21]  Scott T. Grafton,et al.  Functional anatomy of pointing and grasping in humans. , 1996, Cerebral cortex.

[22]  Paul B. Johnson,et al.  Cortical networks for visual reaching: physiological and anatomical organization of frontal and parietal lobe arm regions. , 1996, Cerebral cortex.

[23]  R Kawashima,et al.  Changes in rCBF during grasping in humans examined by PET , 1996, Neuroreport.

[24]  C. Galletti,et al.  Functional Demarcation of a Border Between Areas V6 and V6A in the Superior Parietal Gyrus of the Macaque Monkey , 1996, The European journal of neuroscience.

[25]  D. Boussaoud,et al.  Direct visual pathways for reaching movements in the macaque monkey , 1995, Neuroreport.

[26]  M. Corbetta,et al.  Superior Parietal Cortex Activation During Spatial Attention Shifts and Visual Feature Conjunction , 1995, Science.

[27]  H. Sakata,et al.  Neural mechanisms of visual guidance of hand action in the parietal cortex of the monkey. , 1995, Cerebral cortex.

[28]  P. Roland,et al.  Functional anatomy of reaching and visuomotor learning: a positron emission tomography study. , 1995, Cerebral cortex.

[29]  K M Heilman,et al.  Joint coordination deficits in limb apraxia. , 1995, Brain : a journal of neurology.

[30]  Karl J. Friston,et al.  Spatial registration and normalization of images , 1995 .

[31]  S. Zeki,et al.  The cerebral activity related to the visual perception of forward motion in depth. , 1994, Brain : a journal of neurology.

[32]  Karl J. Friston,et al.  Statistical parametric maps in functional imaging: A general linear approach , 1994 .

[33]  Scott T. Grafton,et al.  Human functional anatomy of visually guided finger movements. , 1992, Brain : a journal of neurology.

[34]  J. Kalaska,et al.  Cerebral cortical mechanisms of reaching movements. , 1992, Science.

[35]  M. Goodale,et al.  Separate visual pathways for perception and action , 1992, Trends in Neurosciences.

[36]  J. Horton,et al.  The representation of the visual field in human striate cortex. A revision of the classic Holmes map. , 1991, Archives of ophthalmology.

[37]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[38]  M. Torrens Co-Planar Stereotaxic Atlas of the Human Brain—3-Dimensional Proportional System: An Approach to Cerebral Imaging, J. Talairach, P. Tournoux. Georg Thieme Verlag, New York (1988), 122 pp., 130 figs. DM 268 , 1990 .

[39]  M. Perenin,et al.  Optic ataxia: a specific disruption in visuomotor mechanisms. I. Different aspects of the deficit in reaching for objects. , 1988, Brain : a journal of neurology.

[40]  C. Gross,et al.  Topographical organization of cortical afferents to extrastriate visual area PO in the macaque: A dual tracer study , 1988, The Journal of comparative neurology.

[41]  D. V. van Essen,et al.  Retinotopic organization of human visual cortex mapped with positron- emission tomography , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[42]  Semir Zeki,et al.  THE ANATOMY AND PHYSIOLOGY OF AREA V6 OF MACAQUE MONKEY VISUAL-CORTEX , 1986 .