Optofluidic analysis system for amplification-free, direct detection of Ebola infection

[1]  Peng Li,et al.  An acoustofluidic sputum liquefier. , 2015, Lab on a chip.

[2]  A. Hawkins,et al.  Electro-optical detection of single λ-DNA. , 2015, Chemical communications.

[3]  R. Mathies,et al.  Integration of programmable microfluidics and on-chip fluorescence detection for biosensing applications. , 2014, Biomicrofluidics.

[4]  Aaron R. Hawkins,et al.  Correlated Electrical and Optical Analysis of Single Nanoparticles and Biomolecules on a Nanopore-Gated Optofluidic Chip , 2014, Nano letters.

[5]  M Selim Ünlü,et al.  Digital sensing and sizing of vesicular stomatitis virus pseudotypes in complex media: a model for Ebola and Marburg detection. , 2014, ACS nano.

[6]  T. D. Yuzvinsky,et al.  Hybrid optofluidic integration. , 2013, Lab on a chip.

[7]  D. Klenerman,et al.  Highly Rapid Amplification-Free and Quantitative DNA Imaging Assay , 2013, Scientific Reports.

[8]  Mehmet Toner,et al.  Magnetic barcode assay for genetic detection of pathogens , 2013, Nature Communications.

[9]  A. Kuehne,et al.  Standardization of the Filovirus Plaque Assay for Use in Preclinical Studies , 2012, Viruses.

[10]  Woon-Hong Yeo,et al.  Immunosensor towards low-cost, rapid diagnosis of tuberculosis. , 2012, Lab on a chip.

[11]  Roberto Corradini,et al.  Detection of Non-Amplified Genomic DNA , 2012 .

[12]  Mehmet Toner,et al.  Specific pathogen detection using bioorthogonal chemistry and diagnostic magnetic resonance. , 2011, Bioconjugate chemistry.

[13]  A. Hawkins,et al.  The photonic integration of non-solid media using optofluidics , 2011 .

[14]  Xudong Fan,et al.  Optofluidic Microsystems for Chemical and Biological Analysis. , 2011, Nature photonics.

[15]  A. Hawkins,et al.  Hollow waveguides with low intrinsic photoluminescence fabricated with Ta(2)O(5) and SiO(2) films. , 2011, Applied physics letters.

[16]  Augustine Goba,et al.  Comprehensive panel of real-time TaqMan polymerase chain reaction assays for detection and absolute quantification of filoviruses, arenaviruses, and New World hantaviruses. , 2010, The American journal of tropical medicine and hygiene.

[17]  Erik C Jensen,et al.  A digital microfluidic platform for the automation of quantitative biomolecular assays. , 2010, Lab on a chip.

[18]  N. Voelcker,et al.  Recent developments in PDMS surface modification for microfluidic devices , 2010, Electrophoresis.

[19]  A. Hawkins,et al.  Microphotonic control of single molecule fluorescence correlation spectroscopy using planar optofluidics. , 2007, Optics express.

[20]  H. Craighead Future lab-on-a-chip technologies for interrogating individual molecules , 2006, Nature.

[21]  D. Psaltis,et al.  Developing optofluidic technology through the fusion of microfluidics and optics , 2006, Nature.

[22]  F. Watzinger,et al.  Detection and monitoring of virus infections by real-time PCR , 2006, Molecular Aspects of Medicine.

[23]  Stuart T. Nichol,et al.  Rapid Diagnosis of Ebola Hemorrhagic Fever by Reverse Transcription-PCR in an Outbreak Setting and Assessment of Patient Viral Load as a Predictor of Outcome , 2004, Journal of Virology.

[24]  A. Griffiths,et al.  Glycoprotein C-deficient mutants of two strains of herpes simplex virus type 1 exhibit unaltered adsorption characteristics on polarized or non-polarized cells. , 1998, The Journal of general virology.

[25]  K. Johnson,et al.  ISOLATION AND PARTIAL CHARACTERISATION OF A NEW VIRUS CAUSING ACUTE HÆMORRHAGIC FEVER IN ZAIRE , 1977, The Lancet.

[26]  W. Russell,et al.  Electron microscopic particle counts on herpes virus using the phosphotungstate negative staining technique. , 1963, Virology.