Maximum likelihood least squares identification method for input nonlinear finite impulse response moving average systems

According to the maximum likelihood principle, a maximum likelihood least squares identification method is presented for input nonlinear finite impulse response moving average (IN-FIR-MA) systems (e.g., Hammerstein FIR-MA systems). The simulation results indicate that the proposed algorithm is effective.

[1]  Ralph R. Martin,et al.  Fast Rule Identification and Neighborhood Selection for Cellular Automata , 2011, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[2]  F. Ding,et al.  An auxiliary model based on a recursive least-squares parameter estimation algorithm for non-uniformly sampled multirate systems , 2009 .

[3]  Feng Ding,et al.  Auxiliary model based multi-innovation extended stochastic gradient parameter estimation with colored measurement noises , 2009, Signal Process..

[4]  Wei Wang,et al.  Maximum likelihood parameter estimation algorithm for controlled autoregressive autoregressive models , 2011, Int. J. Comput. Math..

[5]  Feng Ding,et al.  Performance analysis of the auxiliary models based multi-innovation stochastic gradient estimation algorithm for output error systems , 2010, Digit. Signal Process..

[6]  Feng Ding,et al.  Transformations between some special matrices , 2010, Comput. Math. Appl..

[7]  Sergios Theodoridis,et al.  Semi-blind maximum-likelihood joint channel/data estimation for correlated channels in multiuser MIMO networks , 2010, Signal Process..

[8]  Hamed Mojallali,et al.  Identification of multiple-input single-output Hammerstein models using Bezier curves and Bernstein polynomials , 2011 .

[9]  I. J. Myung,et al.  Tutorial on maximum likelihood estimation , 2003 .

[10]  Feng Ding,et al.  Auxiliary model identification method for multirate multi-input systems based on least squares , 2009, Math. Comput. Model..

[11]  Feng Ding,et al.  Multi-innovation stochastic gradient algorithms for multi-input multi-output systems , 2009, Digit. Signal Process..

[12]  Feng Ding,et al.  Reconstruction of continuous-time systems from their non-uniformly sampled discrete-time systems , 2009, Autom..

[13]  Feng Ding,et al.  Auxiliary model-based least-squares identification methods for Hammerstein output-error systems , 2007, Syst. Control. Lett..

[14]  Feng Ding,et al.  Adaptive Digital Control of Hammerstein Nonlinear Systems with Limited Output Sampling , 2007, SIAM J. Control. Optim..

[15]  Yan Zhang,et al.  Auxiliary model based multi-innovation algorithms for multivariable nonlinear systems , 2010, Math. Comput. Model..

[16]  Feng Ding,et al.  Combined parameter and output estimation of dual-rate systems using an auxiliary model , 2004, Autom..

[17]  Feng Ding,et al.  Iterative least-squares solutions of coupled Sylvester matrix equations , 2005, Syst. Control. Lett..

[18]  Tongwen Chen,et al.  Least squares based self‐tuning control of dual‐rate systems , 2004 .

[19]  Feng Ding,et al.  Least squares based and gradient based iterative identification for Wiener nonlinear systems , 2011, Signal Process..

[20]  Mehdi Dehghan,et al.  An efficient algorithm for solving general coupled matrix equations and its application , 2010, Math. Comput. Model..

[21]  Tongwen Chen,et al.  A GRADIENT BASED ADAPTIVE CONTROL ALGORITHM FOR DUAL‐RATE SYSTEMS , 2006 .

[22]  Mehdi Dehghan,et al.  Finite iterative algorithms for the reflexive and anti-reflexive solutions of the matrix equation A1X1B1+A2X2B2=C , 2009, Math. Comput. Model..

[23]  Feng Ding,et al.  Auxiliary model-based RELS and MI-ELS algorithm for Hammerstein OEMA systems , 2010, Comput. Math. Appl..

[24]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[25]  Feng Ding,et al.  Extended stochastic gradient identification algorithms for Hammerstein-Wiener ARMAX systems , 2008, Comput. Math. Appl..

[26]  Feng Ding,et al.  Gradient Based Iterative Algorithms for Solving a Class of Matrix Equations , 2005, IEEE Trans. Autom. Control..

[27]  Zhanqiang Liu,et al.  Signal frequency and parameter estimation for power systems using the hierarchical identification principle , 2010, Math. Comput. Model..

[28]  Feng Ding,et al.  Parameter estimation with scarce measurements , 2011, Autom..

[29]  Wei Wang,et al.  Maximum likelihood least squares identification for systems with autoregressive moving average noise , 2012 .

[30]  Jie Sheng,et al.  Least squares based iterative parameter estimation algorithm for multivariable controlled ARMA system modelling with finite measurement data , 2011, Math. Comput. Model..

[31]  Feng Ding,et al.  On Iterative Solutions of General Coupled Matrix Equations , 2006, SIAM J. Control. Optim..

[32]  Yong Zhang,et al.  Bias compensation methods for stochastic systems with colored noise , 2011 .

[33]  Feng Ding,et al.  Self-tuning control based on multi-innovation stochastic gradient parameter estimation , 2009, Syst. Control. Lett..

[34]  Feng Ding,et al.  Iterative solutions of the generalized Sylvester matrix equations by using the hierarchical identification principle , 2008, Appl. Math. Comput..

[35]  Jie Sheng,et al.  Convergence of stochastic gradient estimation algorithm for multivariable ARX-like systems , 2010, Comput. Math. Appl..

[36]  Huazhen Fang,et al.  Kalman filter-based identification for systems with randomly missing measurements in a network environment , 2010, Int. J. Control.

[37]  Feng Ding,et al.  Iterative solutions to matrix equations of the form AiXBi=Fi , 2010, Comput. Math. Appl..

[38]  Feng Ding,et al.  Auxiliary model based recursive generalized least squares parameter estimation for Hammerstein OEAR systems , 2010, Math. Comput. Model..

[39]  Feng Ding,et al.  Identification methods for Hammerstein nonlinear systems , 2011, Digit. Signal Process..

[40]  Feng Ding,et al.  Parameter estimation of dual-rate stochastic systems by using an output error method , 2005, IEEE Trans. Autom. Control..

[41]  F. Ding,et al.  Least‐squares parameter estimation for systems with irregularly missing data , 2009 .

[42]  P. X. Liu,et al.  Multiinnovation Least-Squares Identification for System Modeling , 2010, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[43]  Feng Ding,et al.  Gradient-Based Identification Methods for Hammerstein Nonlinear ARMAX Models , 2006 .

[44]  Feng Ding,et al.  Several multi-innovation identification methods , 2010, Digit. Signal Process..

[45]  Feng Ding,et al.  Partially Coupled Stochastic Gradient Identification Methods for Non-Uniformly Sampled Systems , 2010, IEEE Transactions on Automatic Control.

[46]  Feng Ding,et al.  Gradient based and least-squares based iterative identification methods for OE and OEMA systems , 2010, Digit. Signal Process..

[47]  Feng Ding,et al.  Performance analysis of multi-innovation gradient type identification methods , 2007, Autom..

[48]  Tongwen Chen,et al.  Identification of dual‐rate systems based on finite impulse response models , 2004 .

[49]  Feng Ding,et al.  Identification of Hammerstein nonlinear ARMAX systems , 2005, Autom..

[50]  Yanjun Liu,et al.  Gradient based and least squares based iterative algorithms for matrix equations AXB + CXTD = F , 2010, Appl. Math. Comput..

[51]  Yanjun Liu,et al.  Multi-innovation stochastic gradient algorithm for multiple-input single-output systems using the auxiliary model , 2009, Appl. Math. Comput..

[52]  Feng Ding,et al.  Gradient based iterative solutions for general linear matrix equations , 2009, Comput. Math. Appl..

[53]  Philippe Forster,et al.  Improving the threshold performance of maximum likelihood estimation of direction of arrival , 2010, Signal Process..

[54]  Yong Zhang,et al.  Unbiased identification of a class of multi-input single-output systems with correlated disturbances using bias compensation methods , 2011, Math. Comput. Model..

[55]  Feng Ding,et al.  Hierarchical identification of lifted state-space models for general dual-rate systems , 2005, IEEE Transactions on Circuits and Systems I: Regular Papers.

[56]  Feng Ding,et al.  Hierarchical least squares identification methods for multivariable systems , 2005, IEEE Trans. Autom. Control..