Manipulating low-dimensional materials down to the level of single atoms with electron irradiation.

Recent advances in scanning transmission electron microscopy (STEM) instrumentation have made it possible to focus electron beams with sub-atomic precision and to identify the chemical structure of materials at the level of individual atoms. Here we discuss the dynamics that are observed in the structure of low-dimensional materials under electron irradiation, and the potential use of electron beams for single-atom manipulation. As a demonstration of the latter capability, we show how momentum transfer from the electrons of a 60-keV Ångström-sized STEM probe can be used to move silicon atoms embedded in the graphene lattice with atomic precision.

[1]  A. Krasheninnikov,et al.  Atom-by-atom observation of grain boundary migration in graphene. , 2012, Nano letters.

[2]  Jannik C. Meyer,et al.  Single-atom spectroscopy of phosphorus dopants implanted into graphene , 2016, 1610.03419.

[3]  Grégory Pandraud,et al.  Atomic-scale electron-beam sculpting of near-defect-free graphene nanostructures. , 2011, Nano letters.

[4]  S. Iijima,et al.  Imaging active topological defects in carbon nanotubes. , 2007, Nature nanotechnology.

[5]  F. Banhart,et al.  Two-dimensional materials under electron irradiation , 2015 .

[6]  Direct experimental evidence of metal-mediated etching of suspended graphene. , 2012, ACS nano.

[7]  Ondrej L. Krivanek,et al.  Towards sub-Å electron beams , 1999 .

[8]  A. Krasheninnikov,et al.  Stone-Wales-type transformations in carbon nanostructures driven by electron irradiation , 2011, 1105.1617.

[9]  S. Pennycook,et al.  Direct determination of the chemical bonding of individual impurities in graphene. , 2012, Physical review letters.

[10]  G. Tendeloo,et al.  Three-dimensional atomic imaging of crystalline nanoparticles , 2011, Nature.

[11]  E. D. Cubuk,et al.  Direct observation of a long-lived single-atom catalyst chiseling atomic structures in graphene. , 2014, Nano letters.

[12]  K. Kimoto,et al.  Local crystal structure analysis with several picometer precision using scanning transmission electron microscopy. , 2010, Ultramicroscopy.

[13]  Shinji Okazaki,et al.  Pushing the limits of lithography , 2000, Nature.

[14]  S. Pennycook,et al.  Direct visualization of reversible dynamics in a Si6 cluster embedded in a graphene pore , 2013, Nature Communications.

[15]  Jagjit Nanda,et al.  Atomically localized plasmon enhancement in monolayer graphene. , 2012, Nature nanotechnology.

[16]  D. Muller,et al.  Atomic-Scale Chemical Imaging of Composition and Bonding by Aberration-Corrected Microscopy , 2008, Science.

[17]  H. Sawada,et al.  Visualizing and identifying single atoms using electron energy-loss spectroscopy with low accelerating voltage. , 2009, Nature chemistry.

[18]  Michael F. Crommie,et al.  Hydrocarbon lithography on graphene membranes , 2008 .

[19]  S. Pennycook,et al.  Atomic-resolution spectroscopic imaging: past, present and future. , 2009, Journal of electron microscopy.

[20]  K. Mølhave,et al.  Electron irradiation-induced destruction of carbon nanotubes in electron microscopes. , 2007, Ultramicroscopy.

[21]  P D Nellist,et al.  Spectroscopic imaging of single atoms within a bulk solid. , 2004, Physical review letters.

[22]  E. Ullian,et al.  Phosphorylation of LKB1/Par-4 Establishes Schwann Cell Polarity to Initiate and Control Myelin Extent , 2014, Nature Communications.

[23]  Marija Drndic,et al.  Sub-10 nm device fabrication in a transmission electron microscope. , 2007, Nano letters.

[24]  Henny W. Zandbergen,et al.  Atomic-Scale Electron-Beam Sculpting of Defect-Free Graphene Nanostructures , 2011, Microscopy and Microanalysis.

[25]  L. Fitting Kourkoutis,et al.  Atomic-Scale Chemical Imaging of Composition and Bonding by Aberration-Corrected Microscopy , 2008, Science.

[26]  C. W. Hagen,et al.  Approaching the resolution limit of nanometer-scale electron beam-induced deposition. , 2005, Nano letters.

[27]  Jannik C. Meyer,et al.  Accurate measurement of electron beam induced displacement cross sections for single-layer graphene. , 2012, Physical review letters.

[28]  Jinlan Wang,et al.  Recent progress and challenges in graphene nanoribbon synthesis. , 2013, Chemphyschem : a European journal of chemical physics and physical chemistry.

[29]  Ursel Bangert,et al.  Probing the bonding and electronic structure of single atom dopants in graphene with electron energy loss spectroscopy. , 2013, Nano letters.

[30]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[31]  U. Kaiser,et al.  Atomic scale study of the life cycle of a dislocation in graphene from birth to annihilation , 2013, Nature Communications.

[32]  Bernd Kabius,et al.  Electron microscopy image enhanced , 1998, Nature.

[33]  Arnold Burger,et al.  Flexible metallic nanowires with self-adaptive contacts to semiconducting transition-metal dichalcogenide monolayers. , 2014, Nature nanotechnology.

[34]  Simon Kurasch,et al.  Two-dimensional transition metal dichalcogenides under electron irradiation: defect production and doping. , 2012, Physical review letters.

[35]  A. Krasheninnikov,et al.  Electron knock-on damage in hexagonal boron nitride monolayers , 2010 .

[36]  Feliciano Giustino,et al.  Dislocation-Driven Deformations in Graphene , 2012, Science.

[37]  Benjamin Berkels,et al.  Picometre-precision analysis of scanning transmission electron microscopy images of platinum nanocatalysts , 2014, Nature Communications.

[38]  R. L. Smith,et al.  Electron beam stimulated oxidation of carbon , 2009, Nanotechnology.

[39]  Jannik C. Meyer,et al.  Experimental analysis of charge redistribution due to chemical bonding by high-resolution transmission electron microscopy. , 2011, Nature materials.

[40]  Marin Alexe,et al.  Atomic-scale study of electric dipoles near charged and uncharged domain walls in ferroelectric films. , 2008, Nature materials.

[41]  R. Tenne,et al.  Toward atomic-scale bright-field electron tomography for the study of fullerene-like nanostructures. , 2008, Nano letters.

[42]  Clemens Mangler,et al.  Imaging atomic-level random walk of a point defect in graphene , 2014, Nature Communications.

[43]  A. Krasheninnikov,et al.  Atomistic simulations of the implantation of low energy boron and nitrogen ions into graphene , 2011, 1102.0645.

[44]  F E Kalff,et al.  A kilobyte rewritable atomic memory. , 2016, Nature nanotechnology.

[45]  J. Coleman,et al.  Liquid Exfoliation of Layered Materials , 2013, Science.

[46]  P. Rack,et al.  Focused, Nanoscale Electron-Beam-Induced Deposition and Etching , 2006 .

[47]  D. Muller,et al.  Depth Sectioning of Individual Dopant Atoms with Aberration-Corrected Scanning Transmission Electron Microscopy , 2007, Microscopy and Microanalysis.

[48]  G. Seifert,et al.  Electron knock-on cross section of carbon and boron nitride nanotubes , 2007 .

[49]  O. Krivanek,et al.  Dedicated STEM for 200 to 40 keV operation , 2011 .

[50]  Sergei V. Kalinin,et al.  Directing Matter: Toward Atomic-Scale 3D Nanofabrication. , 2016, ACS nano.

[51]  Marija Drndic,et al.  Electron beam nanosculpting of suspended graphene sheets , 2008 .

[52]  A. Ferrari,et al.  Electron-beam-induced direct etching of graphene , 2013 .

[53]  J. Eckert,et al.  Direct in situ observations of single Fe atom catalytic processes and anomalous diffusion at graphene edges , 2014, Proceedings of the National Academy of Sciences.

[54]  W. F. V. Dorp,et al.  Sub-10 nm writing: focused electron beam-induced deposition in perspective , 2014, Applied Physics A.

[55]  P. Chiu,et al.  Structural and Chemical Dynamics of Pyridinic-Nitrogen Defects in Graphene. , 2015, Nano letters.

[56]  S. Pennycook,et al.  Depth sectioning with the aberration-corrected scanning transmission electron microscope. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[57]  Rolf Erni,et al.  Aberration-Corrected Imaging in Transmission Electron Microscopy: An Introduction , 2010 .

[58]  William Mickelson,et al.  Precision cutting of nanotubes with a low-energy electron beam , 2005 .

[59]  Pinshane Y. Huang,et al.  Grains and grain boundaries in single-layer graphene atomic patchwork quilts , 2010, Nature.

[60]  O. Krivanek,et al.  An electron microscope for the aberration-corrected era. , 2008, Ultramicroscopy.

[61]  Jannik C. Meyer,et al.  From point defects in graphene to two-dimensional amorphous carbon. , 2011, Physical review letters.

[62]  Angus I Kirkland,et al.  Resolving strain in carbon nanotubes at the atomic level. , 2011, Nature materials.

[63]  G. Kothleitner,et al.  Fundamental resolution limits during electron-induced direct-write synthesis. , 2014, ACS applied materials & interfaces.

[64]  A. Krasheninnikov,et al.  Experimental observation of boron nitride chains. , 2014, ACS nano.

[65]  O. L. Krivanek,et al.  Sub-ångstrom resolution using aberration corrected electron optics , 2002, Nature.

[66]  V. Nicolosi,et al.  Gentle STEM: ADF imaging and EELS at low primary energies $ , 2010 .

[67]  Clemens Mangler,et al.  Silicon-carbon bond inversions driven by 60-keV electrons in graphene. , 2014, Physical review letters.

[68]  M. Dresselhaus,et al.  Controlled Sculpture of Black Phosphorus Nanoribbons. , 2016, ACS nano.

[69]  C. Stampfer,et al.  Energy gaps in etched graphene nanoribbons. , 2008, Physical review letters.

[70]  Jani Kotakoski,et al.  A journey from order to disorder — Atom by atom transformation from graphene to a 2D carbon glass , 2014, Scientific Reports.

[71]  Yimin A. Wu,et al.  Dynamics of single Fe atoms in graphene vacancies. , 2013, Nano letters.

[72]  K. Suenaga,et al.  Atom-by-atom spectroscopy at graphene edge , 2010, Nature.

[73]  Yimin A. Wu,et al.  Spatial control of defect creation in graphene at the nanoscale , 2012, Nature Communications.

[74]  Jannik C. Meyer,et al.  Isotope analysis in the transmission electron microscope , 2016, Nature Communications.

[75]  Q. Ramasse,et al.  Ion implantation of graphene-toward IC compatible technologies. , 2013, Nano letters.

[76]  Jani Kotakoski,et al.  Stability of graphene edges under electron beam: equilibrium energetics versus dynamic effects. , 2012, ACS nano.

[77]  A. Bleloch,et al.  Free-standing graphene at atomic resolution. , 2008, Nature nanotechnology.

[78]  S. Pennycook,et al.  Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy , 2010, Nature.

[79]  J. Warner,et al.  Rippling graphene at the nanoscale through dislocation addition. , 2013, Nano letters.

[80]  Steven G. Louie,et al.  Graphene at the Edge: Stability and Dynamics , 2009, Science.

[81]  R. Egerton,et al.  Mechanisms of radiation damage in beam‐sensitive specimens, for TEM accelerating voltages between 10 and 300 kV , 2012, Microscopy research and technique.

[82]  U. Kaiser,et al.  The pristine atomic structure of MoS2 monolayer protected from electron radiation damage by graphene , 2013, 1310.2411.

[83]  M F Crommie,et al.  Direct imaging of lattice atoms and topological defects in graphene membranes. , 2008, Nano letters.

[84]  C. Jin,et al.  Deriving carbon atomic chains from graphene. , 2009, Physical review letters.

[85]  A. Kirkland,et al.  Controlled formation of closed-edge nanopores in graphene. , 2015, Nanoscale.

[86]  J. Meyer,et al.  From graphene constrictions to single carbon chains , 2009, 0905.3090.

[87]  Aberration correction in the STEM , 2022, Electron Microscopy and Analysis 1997.

[88]  Cees Dekker,et al.  Controllable atomic scale patterning of freestanding monolayer graphene at elevated temperature. , 2013, ACS nano.

[89]  M F Crommie,et al.  Confinement of Electrons to Quantum Corrals on a Metal Surface , 1993, Science.

[90]  P D Nellist,et al.  Direct Sub-Angstrom Imaging of a Crystal Lattice , 2004, Science.

[91]  J. Miao,et al.  Three-dimensional imaging of dislocations in a nanoparticle at atomic resolution , 2013, Nature.

[92]  Robert A. McLeod,et al.  Basic questions related to electron-induced sputtering in the TEM , 2010 .

[93]  Xinran Wang,et al.  Top–down fabrication of sub-nanometre semiconducting nanoribbons derived from molybdenum disulfide sheets , 2013, Nature Communications.