Markov Random Field modeling , inference & learning in computer vision & image understanding : A survey q

1077-3142/$ see front matter 2013 Elsevier Inc. All rights reserved. http://dx.doi.org/10.1016/j.cviu.2013.07.004 q This paper has been recommended for acceptance by Sven Dickinson. ⇑ Corresponding author at: Perceiving Systems Department, Max Planck Institute for Intelligent Systems, Tübingen, Germany. E-mail addresses: chaohui.wang@tue.mpg.de, wangchaohui82@gmail.com (C. Wang). 1 For the purpose of conciseness, D and/or w may not be explicitly written in the energy function in the following presentation unless it is necessary to do so. Chaohui Wang a,b,⇑, Nikos Komodakis , Nikos Paragios a,d

[1]  Ingemar J. Cox,et al.  A maximum-flow formulation of the N-camera stereo correspondence problem , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[2]  Pushmeet Kohli,et al.  Graph Cut Based Inference with Co-occurrence Statistics , 2010, ECCV.

[3]  Martial Hebert,et al.  Discriminative Fields for Modeling Spatial Dependencies in Natural Images , 2003, NIPS.

[4]  Martin J. Wainwright,et al.  Tree consistency and bounds on the performance of the max-product algorithm and its generalizations , 2004, Stat. Comput..

[5]  Andrew Blake,et al.  Visual Reconstruction , 1987, Deep Learning for EEG-Based Brain–Computer Interfaces.

[6]  D. Schlesinger,et al.  TRANSFORMING AN ARBITRARY MINSUM PROBLEM INTO A BINARY ONE , 2006 .

[7]  William T. Freeman,et al.  Understanding belief propagation and its generalizations , 2003 .

[8]  Christoph Schnörr,et al.  MRF Inference by k-Fan Decomposition and Tight Lagrangian Relaxation , 2010, ECCV.

[9]  Stewart Burn,et al.  Superpixels via pseudo-Boolean optimization , 2011, 2011 International Conference on Computer Vision.

[10]  Pedro Larrañaga,et al.  An Introduction to Probabilistic Graphical Models , 2002, Estimation of Distribution Algorithms.

[11]  Ben Taskar,et al.  Max-Margin Markov Networks , 2003, NIPS.

[12]  Ben Glocker,et al.  Deformable medical image registration: setting the state of the art with discrete methods. , 2011, Annual review of biomedical engineering.

[13]  Mark A. Paskin,et al.  Thin Junction Tree Filters for Simultaneous Localization and Mapping , 2002, IJCAI.

[14]  Michael Isard,et al.  Attractive People: Assembling Loose-Limbed Models using Non-parametric Belief Propagation , 2003, NIPS.

[15]  Antonio Criminisi,et al.  TextonBoost for Image Understanding: Multi-Class Object Recognition and Segmentation by Jointly Modeling Texture, Layout, and Context , 2007, International Journal of Computer Vision.

[16]  Robert J. McEliece,et al.  The generalized distributive law , 2000, IEEE Trans. Inf. Theory.

[17]  Vladlen Koltun,et al.  Efficient Nonlocal Regularization for Optical Flow , 2012, ECCV.

[18]  Hiroshi Ishikawa,et al.  Transformation of General Binary MRF Minimization to the First-Order Case , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  Philip H. S. Torr,et al.  Improved Moves for Truncated Convex Models , 2008, J. Mach. Learn. Res..

[20]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[21]  Vladimir Kolmogorov,et al.  On partial optimality in multi-label MRFs , 2008, ICML '08.

[22]  Vijay V. Vazirani,et al.  Approximation Algorithms , 2001, Springer Berlin Heidelberg.

[23]  Roberto Cipolla,et al.  Multiview Stereo via Volumetric Graph-Cuts and Occlusion Robust Photo-Consistency , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  Yuri Boykov,et al.  Hausdorff Distance Constraint for Multi-surface Segmentation , 2012, ECCV.

[25]  Stephen Gould,et al.  Max-margin Learning for Lower Linear Envelope Potentials in Binary Markov Random Fields , 2011, ICML.

[26]  Richard S. Zemel,et al.  Structured Output Learning with High Order Loss Functions , 2012, AISTATS.

[27]  Philip H. S. Torr,et al.  Fast Memory-Efficient Generalized Belief Propagation , 2006, ECCV.

[28]  Nikos Komodakis,et al.  Beyond Loose LP-Relaxations: Optimizing MRFs by Repairing Cycles , 2008, ECCV.

[29]  Michael J. Black,et al.  Fields of Experts: a framework for learning image priors , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[30]  Patrick Bouthemy,et al.  Multimodal Estimation of Discontinuous Optical Flow using Markov Random Fields , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[31]  Olga Veksler,et al.  Semiautomatic segmentation with compact shape prior , 2009, Image Vis. Comput..

[32]  Demetri Terzopoulos,et al.  Regularization of Inverse Visual Problems Involving Discontinuities , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[33]  Nikos Paragios,et al.  Dense non-rigid surface registration using high-order graph matching , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[34]  Endre Boros,et al.  A graph cut algorithm for higher-order Markov Random Fields , 2011, 2011 International Conference on Computer Vision.

[35]  Nikos Paragios,et al.  3D Knowledge-Based Segmentation Using Pose-Invariant Higher-Order Graphs , 2010, MICCAI.

[36]  D. Samaras,et al.  A Generic Local Deformation Model for Shape Registration , 2011 .

[37]  Brian Potetz,et al.  Efficient Belief Propagation for Vision Using Linear Constraint Nodes , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[38]  Pushmeet Kohli,et al.  P³ & Beyond: Move Making Algorithms for Solving Higher Order Functions , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[39]  Pushmeet Kohli,et al.  Energy minimization for linear envelope MRFs , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[40]  Martin J. Wainwright,et al.  On the Optimality of Tree-reweighted Max-product Message-passing , 2005, UAI.

[41]  Sang Uk Lee,et al.  Nonrigid Image Registration Using DynamicHigher-Order MRF Model , 2008, ECCV.

[42]  Sebastian Nowozin,et al.  Tighter Relaxations for MAP-MRF Inference: A Local Primal-Dual Gap based Separation Algorithm , 2011, AISTATS.

[43]  Olga Veksler,et al.  Fast approximate energy minimization via graph cuts , 2001, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[44]  Ramin Zabih,et al.  Dynamic Programming and Graph Algorithms in Computer Vision , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[45]  Paul Suetens,et al.  Minimal Shape and Intensity Cost Path Segmentation , 2007, IEEE Transactions on Medical Imaging.

[46]  Nikos Komodakis,et al.  Efficient training for pairwise or higher order CRFs via dual decomposition , 2011, CVPR 2011.

[47]  Miguel Á. Carreira-Perpiñán,et al.  Multiscale conditional random fields for image labeling , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[48]  Pushmeet Kohli,et al.  P3 & Beyond: Solving Energies with Higher Order Cliques , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[49]  Nikos Komodakis,et al.  MRF Optimization via Dual Decomposition: Message-Passing Revisited , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[50]  Nikos Paragios,et al.  Simultaneous Cast Shadows, Illumination and Geometry Inference Using Hypergraphs , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[51]  Vladimir Kolmogorov,et al.  Multi-camera Scene Reconstruction via Graph Cuts , 2002, ECCV.

[52]  Toby Sharp,et al.  Image segmentation with a bounding box prior , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[53]  Michael I. Mandel,et al.  Distributed Occlusion Reasoning for Tracking with Nonparametric Belief Propagation , 2004, NIPS.

[54]  Olga Veksler,et al.  Dynamic Programming for Approximate Expansion Algorithm , 2012, ECCV.

[55]  William T. Freeman,et al.  On the optimality of solutions of the max-product belief-propagation algorithm in arbitrary graphs , 2001, IEEE Trans. Inf. Theory.

[56]  Vittorio Ferrari,et al.  Better Appearance Models for Pictorial Structures , 2009, BMVC.

[57]  Jan Kautz,et al.  Fully-Connected CRFs with Non-Parametric Pairwise Potential , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[58]  Venu Madhav Govindu,et al.  MRF solutions for probabilistic optical flow formulations , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[59]  Vladimir Kolmogorov,et al.  Minimizing Nonsubmodular Functions with Graph Cuts-A Review , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[60]  Richard Szeliski,et al.  Computer Vision - Algorithms and Applications , 2011, Texts in Computer Science.

[61]  Lena Gorelick,et al.  Minimizing Energies with Hierarchical Costs , 2012, International Journal of Computer Vision.

[62]  Tomás Werner,et al.  High-arity interactions, polyhedral relaxations, and cutting plane algorithm for soft constraint optimisation (MAP-MRF) , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[63]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[64]  Leo Grady,et al.  P-brush: Continuous valued MRFs with normed pairwise distributions for image segmentation , 2009, CVPR.

[65]  J. Besag On the Statistical Analysis of Dirty Pictures , 1986 .

[66]  Ramesh C. Jain,et al.  Using Dynamic Programming for Solving Variational Problems in Vision , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[67]  Nikos Komodakis,et al.  Beyond pairwise energies: Efficient optimization for higher-order MRFs , 2009, CVPR.

[68]  R. B. Potts Some generalized order-disorder transformations , 1952, Mathematical Proceedings of the Cambridge Philosophical Society.

[69]  Daniel P. Huttenlocher,et al.  Learning for stereo vision using the structured support vector machine , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[70]  Julian J. McAuley,et al.  Fast Inference with Min-Sum Matrix Product , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[71]  Pushmeet Kohli,et al.  Learning Low-order Models for Enforcing High-order Statistics , 2012, AISTATS.

[72]  Vladimir Kolmogorov,et al.  Computing geodesics and minimal surfaces via graph cuts , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[73]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[74]  Jonathan Warrell,et al.  “Lattice Cut” - Constructing superpixels using layer constraints , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[75]  Daphne Koller,et al.  Modeling Latent Variable Uncertainty for Loss-based Learning , 2012, ICML.

[76]  Tsuhan Chen,et al.  Beyond trees: MRF inference via outer-planar decomposition , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[77]  Mihalis Yannakakis,et al.  The complexity of multiway cuts (extended abstract) , 1992, STOC '92.

[78]  Stefano Soatto,et al.  Class segmentation and object localization with superpixel neighborhoods , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[79]  Olga Veksler Multi-label Moves for MRFs with Truncated Convex Priors , 2009, EMMCVPR.

[80]  Marshall F. Tappen,et al.  Learning optimized MAP estimates in continuously-valued MRF models , 2009, CVPR.

[81]  Tommi S. Jaakkola,et al.  Tightening LP Relaxations for MAP using Message Passing , 2008, UAI.

[82]  Nikos Paragios,et al.  Intrinsic dense 3D surface tracking , 2011, CVPR 2011.

[83]  Ben Taskar,et al.  Discriminative learning of Markov random fields for segmentation of 3D scan data , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[84]  Jitendra Malik,et al.  Poselets: Body part detectors trained using 3D human pose annotations , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[85]  William T. Freeman,et al.  Comparison of graph cuts with belief propagation for stereo, using identical MRF parameters , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[86]  Y.Y. Boykov,et al.  Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[87]  Nikos Komodakis,et al.  Towards More Efficient and Effective LP-Based Algorithms for MRF Optimization , 2010, ECCV.

[88]  Ryan P. Adams,et al.  Revisiting uncertainty in graph cut solutions , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[89]  Thorsten Joachims,et al.  Learning structural SVMs with latent variables , 2009, ICML '09.

[90]  Tommi S. Jaakkola,et al.  New Outer Bounds on the Marginal Polytope , 2007, NIPS.

[91]  Václav Hlavác,et al.  Efficient MRF Deformation Model for Non-Rigid Image Matching , 2007, CVPR.

[92]  H. Engl,et al.  Regularization of Inverse Problems , 1996 .

[93]  Tommi S. Jaakkola,et al.  Fixing Max-Product: Convergent Message Passing Algorithms for MAP LP-Relaxations , 2007, NIPS.

[94]  Pushmeet Kohli,et al.  Associative hierarchical CRFs for object class image segmentation , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[95]  Nikos Komodakis,et al.  MRF Energy Minimization and Beyond via Dual Decomposition , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[96]  Pushmeet Kohli,et al.  Exact inference in multi-label CRFs with higher order cliques , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[97]  Michael Isard,et al.  Nonparametric belief propagation , 2010, Commun. ACM.

[98]  Pushmeet Kohli,et al.  Curvature Prior for MRF-Based Segmentation and Shape Inpainting , 2011, DAGM/OAGM Symposium.

[99]  Nassir Navab,et al.  TriangleFlow: Optical Flow with Triangulation-Based Higher-Order Likelihoods , 2010, ECCV.

[100]  Sebastian Nowozin,et al.  Global connectivity potentials for random field models , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[101]  Daniel P. Huttenlocher,et al.  Spatial priors for part-based recognition using statistical models , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[102]  Brendan J. Frey,et al.  Graphical Models for Machine Learning and Digital Communication , 1998 .

[103]  Nikos Paragios,et al.  Efficient parallel message computation for MAP inference , 2011, 2011 International Conference on Computer Vision.

[104]  Vladimir Kolmogorov,et al.  Joint optimization of segmentation and appearance models , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[105]  Andrew Zisserman,et al.  Learning Layered Pictorial Structures from Video , 2004, ICVGIP.

[106]  Richard S. Zemel,et al.  HOP-MAP: Efficient Message Passing with High Order Potentials , 2010, AISTATS.

[107]  Vladimir Kolmogorov,et al.  Feature Correspondence Via Graph Matching: Models and Global Optimization , 2008, ECCV.

[108]  R. Zabih,et al.  What energy functions can be minimized via graph cuts , 2004 .

[109]  Olga Veksler,et al.  Minimizing Sparse High-Order Energies by Submodular Vertex-Cover , 2012, NIPS.

[110]  Davi Geiger,et al.  Segmentation by grouping junctions , 1998, Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.98CB36231).

[111]  Pushmeet Kohli,et al.  Making the right moves: Guiding alpha-expansion using local primal-dual gaps , 2011, CVPR 2011.

[112]  Vladimir Kolmogorov,et al.  Graph cut based image segmentation with connectivity priors , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[113]  Ioannis A. Kakadiaris,et al.  Viewpoint invariant 3D landmark model inference from monocular 2D images using higher-order priors , 2011, 2011 International Conference on Computer Vision.

[114]  Nikos Komodakis Learning to cluster using high order graphical models with latent variables , 2011, 2011 International Conference on Computer Vision.

[115]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[116]  Pushmeet Kohli,et al.  Dynamic Graph Cuts for Efficient Inference in Markov Random Fields , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[117]  Uffe Kjærulff Inference in Bayesian Networks Using Nested Junction Trees , 1998, Learning in Graphical Models.

[118]  Martin A. Fischler,et al.  The Representation and Matching of Pictorial Structures , 1973, IEEE Transactions on Computers.

[119]  Alan L. Yuille,et al.  Region Competition: Unifying Snakes, Region Growing, and Bayes/MDL for Multiband Image Segmentation , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[120]  Pushmeet Kohli,et al.  Inference Methods for CRFs with Co-occurrence Statistics , 2012, International Journal of Computer Vision.

[121]  Michael J. Black,et al.  HumanEva: Synchronized Video and Motion Capture Dataset and Baseline Algorithm for Evaluation of Articulated Human Motion , 2010, International Journal of Computer Vision.

[122]  P. Kohli,et al.  Efficiently solving dynamic Markov random fields using graph cuts , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[123]  Martial Hebert,et al.  Discriminative Random Fields , 2006, International Journal of Computer Vision.

[124]  Endre Boros,et al.  Pseudo-Boolean optimization , 2002, Discret. Appl. Math..

[125]  Pierre Hansen,et al.  Roof duality, complementation and persistency in quadratic 0–1 optimization , 1984, Math. Program..

[126]  Deepu Rajan,et al.  An MRF-Based Approach to Generation of Super-Resolution Images from Blurred Observations , 2004, Journal of Mathematical Imaging and Vision.

[127]  Hiroshi Ishikawa,et al.  Exact Optimization for Markov Random Fields with Convex Priors , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[128]  Pushmeet Kohli,et al.  Minimizing sparse higher order energy functions of discrete variables , 2009, CVPR.

[129]  Hans-Peter Meinzer,et al.  Statistical shape models for 3D medical image segmentation: A review , 2009, Medical Image Anal..

[130]  Tai Sing Lee,et al.  Efficient belief propagation for higher-order cliques using linear constraint nodes , 2008, Comput. Vis. Image Underst..

[131]  Trevor Darrell,et al.  Conditional Random Fields for Object Recognition , 2004, NIPS.

[132]  Antonin Chambolle,et al.  Total Variation Minimization and a Class of Binary MRF Models , 2005, EMMCVPR.

[133]  Nassir Navab,et al.  Discrete tracking of parametrized curves , 2009, CVPR 2009.

[134]  Martial Hebert,et al.  Contextual classification with functional Max-Margin Markov Networks , 2009, CVPR.

[135]  Nassir Navab,et al.  Optical flow estimation with uncertainties through dynamic MRFs , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[136]  Vladimir Kolmogorov,et al.  Analyzing Convex Relaxations for MAP Estimation , 2009 .

[137]  Pushmeet Kohli,et al.  Robust Higher Order Potentials for Enforcing Label Consistency , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[138]  Michael Isard,et al.  PAMPAS: real-valued graphical models for computer vision , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[139]  Nassir Navab,et al.  Dense Registration with Deformation Priors , 2009, IPMI.

[140]  Nassir Navab,et al.  Dense image registration through MRFs and efficient linear programming , 2008, Medical Image Anal..

[141]  Nikos Komodakis,et al.  Performance vs computational efficiency for optimizing single and dynamic MRFs: Setting the state of the art with primal-dual strategies , 2008, Comput. Vis. Image Underst..

[142]  J. Besag Spatial Interaction and the Statistical Analysis of Lattice Systems , 1974 .

[143]  Christopher Joseph Pal,et al.  Learning Conditional Random Fields for Stereo , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[144]  X. Jin Factor graphs and the Sum-Product Algorithm , 2002 .

[145]  Andrew W. Fitzgibbon,et al.  Global stereo reconstruction under second order smoothness priors , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[146]  Andrew Blake,et al.  Fusion Moves for Markov Random Field Optimization , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[147]  Stephen Gould,et al.  Accelerated dual decomposition for MAP inference , 2010, ICML.

[148]  Thomas de Quincey [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.

[149]  Christopher M. Bishop,et al.  Pattern Recognition and Machine Learning (Information Science and Statistics) , 2006 .

[150]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[151]  Martial Hebert,et al.  Exploiting Inference for Approximate Parameter Learning in Discriminative Fields: An Empirical Study , 2005, EMMCVPR.

[152]  Nikos Komodakis,et al.  Shape priors and discrete MRFs for knowledge-based segmentation , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[153]  Olga Veksler,et al.  Star Shape Prior for Graph-Cut Image Segmentation , 2008, ECCV.

[154]  Marie-Pierre Jolly,et al.  Interactive Organ Segmentation Using Graph Cuts , 2000, MICCAI.

[155]  Fredrik Kahl,et al.  Parallel and distributed graph cuts by dual decomposition , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[156]  Christopher M. Brown,et al.  The theory and practice of Bayesian image labeling , 1990, International Journal of Computer Vision.

[157]  Aaron Hertzmann,et al.  Learning 3D mesh segmentation and labeling , 2010, SIGGRAPH 2010.

[158]  Nikos Paragios,et al.  Tagged cardiac MR image segmentation using boundary & regional-support and graph-based deformable priors , 2011, 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[159]  Steffen L. Lauritzen,et al.  Graphical models in R , 1996 .

[160]  Michael J. Black,et al.  On the Spatial Statistics of Optical Flow , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[161]  Junjie Bai,et al.  Fast dynamic programming for labeling problems with ordering constraints , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[162]  Olga Veksler,et al.  Order-Preserving Moves for Graph-Cut-Based Optimization , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[163]  Hans Burkhardt,et al.  Fast Generalized Belief Propagation for MAP Estimation on 2D and 3D Grid-Like Markov Random Fields , 2008, DAGM-Symposium.

[164]  Olga Veksler Graph Cut Based Optimization for MRFs with Truncated Convex Priors , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[165]  D. Greig,et al.  Exact Maximum A Posteriori Estimation for Binary Images , 1989 .

[166]  Ivan Kovtun,et al.  Partial Optimal Labeling Search for a NP-Hard Subclass of (max, +) Problems , 2003, DAGM-Symposium.

[167]  Pushmeet Kohli,et al.  Simultaneous Segmentation and Pose Estimation of Humans Using Dynamic Graph Cuts , 2008, International Journal of Computer Vision.

[168]  Pushmeet Kohli,et al.  Dynamic Hybrid Algorithms for MAP Inference in Discrete MRFs , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[169]  Olivier Juan,et al.  Active Graph Cuts , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[170]  Sebastian Nowozin,et al.  A Comparative Study of Modern Inference Techniques for Discrete Energy Minimization Problems , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[171]  Gareth Funka-Lea,et al.  Graph Cuts and Efficient N-D Image Segmentation , 2006, International Journal of Computer Vision.

[172]  Antonio Torralba,et al.  SIFT Flow: Dense Correspondence across Scenes and Its Applications , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[173]  Martin J. Wainwright,et al.  MAP estimation via agreement on trees: message-passing and linear programming , 2005, IEEE Transactions on Information Theory.

[174]  Sven J. Dickinson,et al.  Optimal Contour Closure by Superpixel Grouping , 2010, ECCV.

[175]  Olga Veksler,et al.  Markov random fields with efficient approximations , 1998, Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.98CB36231).

[176]  Nanning Zheng,et al.  Stereo Matching Using Belief Propagation , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[177]  Brendan J. Frey,et al.  A Revolution: Belief Propagation in Graphs with Cycles , 1997, NIPS.

[178]  A. P. Dawid,et al.  Applications of a general propagation algorithm for probabilistic expert systems , 1992 .

[179]  Stan Z. Li Markov Random Field Modeling in Image Analysis , 2009, Advances in Pattern Recognition.

[180]  Michael I. Mandel,et al.  Visual Hand Tracking Using Nonparametric Belief Propagation , 2004, 2004 Conference on Computer Vision and Pattern Recognition Workshop.

[181]  A. N. Tikhonov,et al.  Solutions of ill-posed problems , 1977 .

[182]  Thorsten Joachims,et al.  Training structural SVMs when exact inference is intractable , 2008, ICML '08.

[183]  David Lee,et al.  One-Dimensional Regularization with Discontinuities , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[184]  Pedro F. Felzenszwalb,et al.  Efficient belief propagation for early vision , 2004, CVPR 2004.

[185]  Daniel Freedman,et al.  Energy minimization via graph cuts: settling what is possible , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[186]  Gunilla Borgefors,et al.  Distance transformations in digital images , 1986, Comput. Vis. Graph. Image Process..

[187]  Andrew McCallum,et al.  An Introduction to Conditional Random Fields , 2010, Found. Trends Mach. Learn..

[188]  Vladlen Koltun,et al.  Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials , 2011, NIPS.

[189]  Andrew V. Goldberg,et al.  A new approach to the maximum flow problem , 1986, STOC '86.

[190]  J. Mixter Fast , 2012 .

[191]  Bernt Schiele,et al.  Pictorial structures revisited: People detection and articulated pose estimation , 2009, CVPR.

[192]  Hiroshi Ishikawa Higher-order clique reduction in binary graph cut , 2009, CVPR.

[193]  Daniel P. Huttenlocher,et al.  Pictorial Structures for Object Recognition , 2004, International Journal of Computer Vision.

[194]  Pawan Kumar Mudigonda,et al.  Combinatorial and convex optimization for probabilistic models in computer vision , 2008 .

[195]  Anton Osokin,et al.  Fast Approximate Energy Minimization with Label Costs , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[196]  Andrew C. Gallagher,et al.  Inference for order reduction in Markov random fields , 2011, CVPR 2011.

[197]  E. Ising Beitrag zur Theorie des Ferromagnetismus , 1925 .

[198]  R. Zabih,et al.  Exact voxel occupancy with graph cuts , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[199]  Nir Friedman,et al.  Probabilistic Graphical Models - Principles and Techniques , 2009 .

[200]  D. R. Fulkerson,et al.  Flows in Networks. , 1964 .

[201]  Richard Szeliski,et al.  A Comparative Study of Energy Minimization Methods for Markov Random Fields with Smoothness-Based Priors , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[202]  Tibério S. Caetano,et al.  Faster Algorithms for Max-Product Message-Passing , 2011, J. Mach. Learn. Res..

[203]  Michael J. Black,et al.  A Fully-Connected Layered Model of Foreground and Background Flow , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[204]  Nikos Komodakis,et al.  Approximate Labeling via Graph Cuts Based on Linear Programming , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[205]  Carlo Tomasi,et al.  Multiway cut for stereo and motion with slanted surfaces , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[206]  Michael I. Jordan,et al.  Graphical Models, Exponential Families, and Variational Inference , 2008, Found. Trends Mach. Learn..

[207]  Paria Mehrani,et al.  Superpixels and Supervoxels in an Energy Optimization Framework , 2010, ECCV.

[208]  Michael J. Black,et al.  Fields of Experts , 2009, International Journal of Computer Vision.

[209]  Jean-Francois Mangin,et al.  Detection of linear features in SAR images: application to road network extraction , 1998, IEEE Trans. Geosci. Remote. Sens..

[210]  Yair Weiss,et al.  Linear Programming Relaxations and Belief Propagation - An Empirical Study , 2006, J. Mach. Learn. Res..

[211]  Vladimir Kolmogorov,et al.  Convergent Tree-Reweighted Message Passing for Energy Minimization , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[212]  William T. Freeman,et al.  Example-Based Super-Resolution , 2002, IEEE Computer Graphics and Applications.

[213]  Endre Boros,et al.  Preprocessing of unconstrained quadratic binary optimization , 2006 .

[214]  David A. McAllester,et al.  Object Detection with Discriminatively Trained Part Based Models , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[215]  Derek Hoiem,et al.  Learning CRFs Using Graph Cuts , 2008, ECCV.

[216]  Shing-Tung Yau,et al.  Nonlinearly Constrained MRFs: Exploring the Intrinsic Dimensions of Higher-Order Cliques , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[217]  Peter V. Gehler,et al.  Poselet Conditioned Pictorial Structures , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[218]  Tomás Werner,et al.  A Linear Programming Approach to Max-Sum Problem: A Review , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[219]  Andrew Blake,et al.  "GrabCut" , 2004, ACM Trans. Graph..

[220]  Aly A. Farag,et al.  Optimizing Binary MRFs with Higher Order Cliques , 2008, ECCV.

[221]  R. K. Shyamasundar,et al.  Introduction to algorithms , 1996 .

[222]  Vladimir Kolmogorov,et al.  Optimizing Binary MRFs via Extended Roof Duality , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[223]  Michael J. Black,et al.  Efficient Belief Propagation with Learned Higher-Order Markov Random Fields , 2006, ECCV.

[224]  Andrew McCallum,et al.  Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data , 2001, ICML.

[225]  Tomás Werner,et al.  Revisiting the Linear Programming Relaxation Approach to Gibbs Energy Minimization and Weighted Constraint Satisfaction , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[226]  Leonhard Held,et al.  Gaussian Markov Random Fields: Theory and Applications , 2005 .

[227]  Pushmeet Kohli,et al.  Measuring uncertainty in graph cut solutions , 2008, Comput. Vis. Image Underst..

[228]  William T. Freeman,et al.  Learning low-level vision , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[229]  Sean R Eddy,et al.  What is dynamic programming? , 2004, Nature Biotechnology.