Protein sensing and cell discrimination using a sensor array based on nanomaterial-assisted chemiluminescence.

Cross-reactive sensor arrays, known as "chemical noses", offer an alternative to time-consuming analytical methods. Here, we report a sensor array based on nanomaterial-assisted chemiluminescence (CL) for protein sensing and cell discrimination. We have found that the CL efficiencies are improved to varied degrees for a given protein or cell line on catalytic nanomaterials. Distinct CL response patterns as "fingerprints" can be obtained on the array and then identified through linear discriminant analysis (LDA). The sensing of 12 kinds of proteins at three concentrations, as well as 12 types of human cell lines among normal, cancerous, and metastatic, has been performed. Compared with most fluorescent or colorimetric approaches which rely on the strong interaction between analytes and sensing elements, our array offers the advantage of both sensitivity and reversibility.