On Three-Valued Acceptance Conditions of Abstract Dialectical Frameworks

Abstract Abstract Dialectical Frameworks ( adf s) are generalizations of Dung's abstract argumentation frameworks ( af s) where each argument has an associated acceptance condition expressed by a boolean formula. The resulting extension is robust enough not only to model the attack relation original to af s, but also others types of dependencies and interactions between arguments. A recent development in adf s proposed an alternative formalization involving three-valued acceptance conditions, connecting the original definitions of adf s to the concept of three-valued argument labellings, a core concept in computational argumentation literature. In this paper, we revise some of the main semantics defined under this three-valued approach and prove our definitions hold equivalence to well-known semantics of af s.

[1]  Gerard Vreeswijk,et al.  Abstract Argumentation Systems , 1997, Artif. Intell..

[2]  Guillermo Ricardo Simari,et al.  An Abstract Argumentation Framework with Varied-Strength Attacks , 2008, KR.

[3]  C. Cayrol,et al.  On the Acceptability of Arguments in Bipolar Argumentation Frameworks , 2005, ECSQARU.

[4]  Sanjay Modgil,et al.  Reasoning about preferences in argumentation frameworks , 2009, Artif. Intell..

[5]  Martin Caminada,et al.  On the Equivalence between Logic Programming Semantics and Argumentation Semantics , 2013, ECSQARU.

[6]  Stefan Woltran,et al.  Generalizations of Dung Frameworks and Their Role in Formal Argumentation , 2014, IEEE Intelligent Systems.

[7]  Sébastien Konieczny,et al.  Weighted Attacks in Argumentation Frameworks , 2012, KR.

[8]  Dov M. Gabbay,et al.  A Logical Account of Formal Argumentation , 2009, Stud Logica.

[9]  A. Tarski A LATTICE-THEORETICAL FIXPOINT THEOREM AND ITS APPLICATIONS , 1955 .

[10]  Michael Wooldridge,et al.  Weighted argument systems: Basic definitions, algorithms, and complexity results , 2011, Artif. Intell..

[11]  Pietro Baroni,et al.  An introduction to argumentation semantics , 2011, The Knowledge Engineering Review.

[12]  Guillermo Ricardo Simari,et al.  A Mathematical Treatment of Defeasible Reasoning and its Implementation , 1992, Artif. Intell..

[13]  Stefan Woltran,et al.  Abstract Dialectical Frameworks , 2010, KR.

[14]  Sylwia Polberg,et al.  Revisiting Support in Abstract Argumentation Systems , 2014, COMMA.

[15]  Bart Verheij,et al.  Two Approaches to Dialectical Argumentation: Admissible Sets and Argumentation Stages , 1999 .

[16]  Martin Caminada,et al.  On the Issue of Reinstatement in Argumentation , 2006, JELIA.

[17]  Phan Minh Dung,et al.  On the Acceptability of Arguments and its Fundamental Role in Nonmonotonic Reasoning, Logic Programming and n-Person Games , 1995, Artif. Intell..

[18]  Nir Oren,et al.  Semantics for Evidence-Based Argumentation , 2008, COMMA.

[19]  Hannes Strass,et al.  Abstract Dialectical Frameworks. An Overview. , 2017 .

[20]  J. Pollock Cognitive Carpentry: A Blueprint for How to Build a Person , 1995 .

[21]  Hannes Strass,et al.  Abstract Dialectical Frameworks Revisited , 2013, IJCAI.

[22]  John L. Pollock,et al.  How to Reason Defeasibly , 1992, Artif. Intell..

[23]  Teodor C. Przymusinski The Well-Founded Semantics Coincides with the Three-Valued Stable Semantics , 1990, Fundam. Inform..

[24]  Claudette Cayrol,et al.  Bipolarity in argumentation graphs: Towards a better understanding , 2013, Int. J. Approx. Reason..

[25]  Hannes Strass Approximating operators and semantics for abstract dialectical frameworks , 2013, Artif. Intell..

[26]  Gabriella Pigozzi,et al.  On judgment aggregation in abstract argumentation , 2009, Autonomous Agents and Multi-Agent Systems.

[27]  Paul E. Dunne,et al.  Semi-stable semantics , 2006, J. Log. Comput..