Unsorted Functional Translations

In this article we first show how the functional and the optimized functional translation from modal logic to many-sorted first-order logic can be naturally extended to the hybrid language H(@,@7). The translation is correct not only when reasoning over the class of all models, but for any first-order definable class. We then show that sorts can be safely removed (i.e., without affecting the satisfiability status of the formula) for frame classes that can be defined in the basic modal language, and show a counterexample for a frame class defined using nominals.

[1]  S. K. Thomason,et al.  AXIOMATIC CLASSES IN PROPOSITIONAL MODAL LOGIC , 1975 .

[2]  Balder ten Cate,et al.  Hybrid logics , 2007, Handbook of Modal Logic.

[3]  Hans Jürgen Ohlbach,et al.  A Resolution Calculus for Modal Logics , 1988, CADE.

[4]  R. Schmidt Optimised modal translation and resolution , 1997 .

[5]  Alan Robinson,et al.  The Inverse Method , 2001, Handbook of Automated Reasoning.

[6]  Ullrich Hustadt,et al.  An empirical analysis of modal theorem provers , 1999, J. Appl. Non Class. Logics.

[7]  Ian Horrocks,et al.  Computational modal logic , 2007, Handbook of Modal Logic.

[8]  Renate A. Schmidt,et al.  Functional Translation and Second-Order Frame Properties of Modal Logics , 1997, J. Log. Comput..

[9]  Frank Wolter,et al.  Handbook of Modal Logic , 2007, Studies in logic and practical reasoning.

[10]  Christoph Walther Many-Sorted Inferences in Automated Theorem Proving , 1989, Sorts and Types in Artificial Intelligence.

[11]  Maarten de Rijke,et al.  Tree-based Heuristics in Modal Theorem Proving , 2000, ECAI.

[12]  Daniel Alejandro Gorín,et al.  Automated reasoning techniques for hybrid logics , 2009 .

[13]  Renate A. Schmidt Decidability by Resolution for Propositional Modal Logics , 2004, Journal of Automated Reasoning.

[14]  Christoph Weidenbach,et al.  Combining Superposition, Sorts and Splitting , 2001, Handbook of Automated Reasoning.

[15]  M. de Rijke,et al.  Modal Logic , 2001, Cambridge Tracts in Theoretical Computer Science.

[16]  Patrice Enjalbert,et al.  Modal Theorem Proving: An Equational Viewpoint , 1989, IJCAI.

[17]  Luis Fariñas del Cerro,et al.  Linear Modal Deductions , 1988, CADE.

[18]  Christoph Weidenbach,et al.  System Description: SpassVersion 3.0 , 2007, CADE.

[19]  William H. Joyner Resolution Strategies as Decision Procedures , 1976, JACM.