On hybrid censored Weibull distribution

A hybrid censoring is a mixture of Type-I and Type-II censoring schemes. This article presents the statistical inferences on Weibull parameters when the data are hybrid censored. The maximum likelihood estimators (MLEs) and the approximate maximum likelihood estimators are developed for estimating the unknown parameters. Asymptotic distributions of the MLEs are used to construct approximate confidence intervals. Bayes estimates and the corresponding highest posterior density credible intervals of the unknown parameters are obtained under suitable priors on the unknown parameters and using the Gibbs sampling procedure. The method of obtaining the optimum censoring scheme based on the maximum information measure is also developed. Monte Carlo simulations are performed to compare the performances of the different methods and one data set is analyzed for illustrative purposes.

[1]  N. Balakrishnan,et al.  Reliability sampling plans for lognormal distribution, based on progressively-censored samples , 2000, IEEE Trans. Reliab..

[2]  Debasis Kundu,et al.  Hybrid censoring schemes with exponential failure distribution , 1998 .

[3]  Wen-Tao Huang,et al.  Bayesian Sampling Plans for Exponential Distribution Based on Type I Censoring Data , 2002 .

[4]  Lam Yeh,et al.  Bayesian Variable Sampling Plans for the Exponential Distribution with Type I Censoring , 1994 .

[5]  N. Balakrishnan,et al.  Exact likelihood inference based on Type-I and Type-II hybrid censored samples from the exponential distribution , 2003 .

[6]  B. Epstein Truncated Life Tests in the Exponential Case , 1954 .

[7]  W. Press,et al.  Numerical Recipes: The Art of Scientific Computing , 1987 .

[8]  Ming-Hui Chen,et al.  Monte Carlo Estimation of Bayesian Credible and HPD Intervals , 1999 .

[9]  James O. Berger,et al.  Bayesian Analysis for the Poly-Weibull Distribution , 1993 .

[10]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[11]  Luc Devroye,et al.  A simple algorithm for generating random variates with a log-concave density , 1984, Computing.

[12]  B. Arnold,et al.  A first course in order statistics , 1994 .

[13]  Nader Ebrahimi Prediction intervals for future failures in the exponential distribution under hybrid censoring , 1992 .

[14]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[15]  G. K. Bhattacharyya,et al.  Exact confidence bounds for an exponential parameter under hybrid censoring , 1987 .

[16]  Bong-Jin Yum,et al.  Development of r,T hybrid sampling plans for exponential lifetime distributions , 1996 .

[17]  William Q. Meeker,et al.  Comparisons of Approximate Confidence Interval Procedures for Type I Censored Data , 2000, Technometrics.

[18]  Debasis Kundu,et al.  On the comparison of Fisher information of the Weibull and GE distributions , 2006 .

[19]  Irwin Guttman,et al.  Bayesian analysis of hybrid life tests with exponential failure times , 1987 .

[20]  R. Dykstra,et al.  A Confidence Interval for an Exponential Parameter from a Hybrid Life Test , 1982 .

[21]  Nader Ebrahimi Estimating the parameters of an exponential distribution from a hybrid life test , 1986 .

[22]  B. Arnold,et al.  A first course in order statistics , 2008 .

[23]  Donald Geman,et al.  Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images , 1984 .

[24]  W. Meeker,et al.  Bayesian life test planning for the Weibull distribution with given shape parameter , 2005 .

[25]  D. Kundu,et al.  Theory & Methods: Generalized exponential distributions , 1999 .