Electroswitching of emission and coloration with quick response and high reversibility in an electrochemical cell.

No fade to grey: Electroswitching of emission and coloration was achieved for a combination of a luminescent Eu(III) complex and an electrochromic molecule of diheptyl viologen (HV(2+)), indicating that such a combination could be used as a display material with dual emissive and reflective modes. The Prussian blue (PB)-modified electrode improved the response time and reversibility for the switching of emission and coloration, by acting as a counter electrode for the electrochromism of HV(2+).

[1]  Clemens Bechinger,et al.  Photoelectrochromic windows and displays , 1996, Nature.

[2]  David R. Rosseinsky,et al.  Electrochromic Systems and the Prospects for Devices , 2001 .

[3]  John R. Reynolds,et al.  Electrochromic organic and polymeric materials for display applications , 2006, Displays.

[4]  Norihisa Kobayashi,et al.  Organic electrochromism for a new color electronic paper , 2008 .

[5]  Terence E. Rice,et al.  Protonengesteuertes Schalten der Lumineszenz von Lanthanoidkomplexen in wäßriger Lösung: pH‐Sensoren auf der Basis langlebiger Emission , 1996 .

[6]  M Montalti,et al.  A luminescent anion sensor based on a europium hybrid complex. , 2001, Journal of the American Chemical Society.

[7]  Y. Kai,et al.  Luminescent Polymer Containing the Eu(III) Complex Having Fast Radiation Rate and High Emission Quantum Efficiency , 2003 .

[8]  Mark A Rizzo,et al.  An improved cyan fluorescent protein variant useful for FRET , 2004, Nature Biotechnology.

[9]  Masahiro Irie,et al.  Digital photoswitching of fluorescence based on the photochromism of diarylethene derivatives at a single-molecule level. , 2004, Journal of the American Chemical Society.

[10]  Toshiyuki Watanabe,et al.  Reversible Fluorescent On–Off Recording in a Highly Transparent Polymeric Material Utilizing Fluorescent Resonance Energy Transfer (FRET) Induced by Heat Treatment , 2008 .

[11]  Norihisa Kobayashi,et al.  Electrochemically controllable emission and coloration by using europium(III) complex and viologen derivatives. , 2011, Chemical communications.

[12]  Koen Binnemans,et al.  Lanthanide-based luminescent hybrid materials. , 2009, Chemical reviews.

[13]  J. H. Rector,et al.  Yttrium and lanthanum hydride films with switchable optical properties , 1996, Nature.

[14]  C. Lampert,et al.  Electrochromic materials and devices for energy-efficient windows. [161 references] , 1984 .

[15]  Donald Fitzmaurice,et al.  Ultrafast electrochromic windows based on redox-chromophore modified nanostructured semiconducting and conducting films , 2000 .

[16]  Lixin Wu,et al.  Electroswitchable fluorescent thin film controlled by polyoxometalate , 2011 .

[17]  Giacomo Bergamini,et al.  Polysulfurated pyrene-cored dendrimers: luminescent and electrochromic properties. , 2008, Chemistry.

[18]  T. Swager,et al.  Conjugated polymer-based chemical sensors. , 2000, Chemical reviews.

[19]  Igor L. Medintz,et al.  Materials for fluorescence resonance energy transfer analysis: beyond traditional donor-acceptor combinations. , 2006, Angewandte Chemie.

[20]  E. Wang,et al.  Polyoxometalate-based inorganic-organic hybrid film structure with reversible electroswitchable fluorescence property. , 2012, Chemical communications.

[21]  David Parker,et al.  Luminescent lanthanide sensors for pH, pO2 and selected anions , 2000 .

[22]  I. Uchida,et al.  Electrochemistry of polynuclear transition metal cyanides: Prussian blue and its analogues , 1986 .

[23]  A. P. de Silva,et al.  Molecular-scale logic gates. , 2004, Chemistry.

[24]  Igor L. Medintz,et al.  Materialien für den resonanten Fluoreszenzenergietransfer (FRET): jenseits klassischer Donor‐Acceptor‐Kombinationen , 2006 .

[25]  Robert Kostecki,et al.  Switchable mirrors based on nickel–magnesium films , 2001 .

[26]  Paul M. S. Monk,et al.  The Viologens: Physicochemical Properties, Synthesis and Applications of the Salts of 4,4'-Bipyridine , 1998 .

[27]  J. Bünzli,et al.  Taking advantage of luminescent lanthanide ions. , 2005, Chemical Society reviews.

[28]  Toshihiko Nagamura,et al.  Enhanced lasing properties of dissymmetric Eu(III) complex with bidentate phosphine ligands. , 2007, The journal of physical chemistry. A.

[29]  Terence E. Rice,et al.  Proton‐Controlled Switching of Luminescence in Lanthanide Complexes in Aqueous Solution: pH Sensors Based on Long‐Lived Emission , 1996 .

[30]  Kurt D. Benkstein,et al.  Luminescent sensor molecules based on coordinated metals: A review of recent developments , 2000 .

[31]  Aline Rougier,et al.  Electrochromic properties of WO3 as a single layer and in a full device: From the visible to the infrared , 2010 .

[32]  Masahiro Irie,et al.  Organic chemistry: A digital fluorescent molecular photoswitch , 2002, Nature.

[33]  Tsuyoshi Kawai,et al.  Nondestructive luminescence intensity readout of a photochromic lanthanide(III) complex. , 2009, Chemical communications.