Computing in Finite Time

AbstractIf a message can have n different values and all values are equally probable, then the entropy of the message is log(n). In the present paper, we discuss the expectation value of the entropy, for an arbitrary probability distribution. We introduce a mixture of all possible probability distributions. We assume that the mixing function is uniform either in flat probability space, i.e. the unitary n-dimensional hypertriangleor in Bhattacharyya’s spherical statistical space, i.e. the unitary n-dimensional hyperoctant. A computation is a manipulation of an incoming message, i.e. a mapping in probability space: either a reversible mapping, i.e. a symmetry operation (rotation or reflection) in n-dimen sional spaceor an irreversible mapping, i.e. a projection operation from n-dimensional to lower-dimensional space. During a reversible computation, no isentropic path in the probability space can be found. Therefore we have to conclude that a computation cannot be represented by a message which merely follows a path in n-dimensional probability space. Rather, the point representing the mixing function travels along a path in an infinite-dimensional Hilbert space.

[1]  B. Andresen,et al.  Distillation by Thermo dynamic Geometry , 2000 .

[2]  R. Landauer,et al.  The Fundamental Physical Limits of Computation. , 1985 .

[3]  B. Everitt,et al.  Finite Mixture Distributions , 1981 .

[4]  Bart Desoete,et al.  Equipartition Principles in Finite-Time Thermodynamics , 2000 .

[5]  R. Landauer Information is physical , 1991 .

[6]  Kristian M. Lien,et al.  Equipartition of Forces: A New Principle for Process Design and Optimization , 1996 .

[7]  K. Jones Entropy of random quantum states , 1990 .

[8]  H. Ries,et al.  Optimal Finite-Time Endoreversible Processes—General Theory and Applications , 2005 .

[9]  Alexis Vos The entropy of a mixture of probability distributions , 2005, Entropy.

[10]  W. Wootters Random quantum states , 1990 .

[11]  C. Atkinson Rao's distance measure , 1981 .

[12]  Stanislaw Sieniutycz,et al.  Finite-time thermodynamics and thermoeconomics , 1990 .

[13]  P. Salamon,et al.  From Statistical Distances to Minimally Dissipative Processes , 2000 .

[14]  Information entropy of Gegenbauer polynomials , 2000 .

[15]  S. Sieniutycz,et al.  Thermodynamic Optimization of Finite-Time Processes , 2000 .

[16]  Maurice G. Kendall,et al.  A Course in the Geometry of n Dimensions , 1962 .

[17]  R. Landauer,et al.  Irreversibility and heat generation in the computing process , 1961, IBM J. Res. Dev..

[18]  Alexis De Vos The Expectation Value of the Entropy of a Digital Message , 2002, Open Syst. Inf. Dyn..

[19]  W. Wootters Statistical distance and Hilbert space , 1981 .

[20]  On the relation between various entropy concepts and the valoric interpretation , 1992 .

[21]  Bjarne Andresen,et al.  Thermodynamics in finite time , 1984 .

[22]  Daniel Tondeur,et al.  Equipartition of entropy production. An optimality criterion for transfer and separation processes , 1987 .

[23]  Alexis De Vos Fundamental limits of power dissipation in digital electronics. , 1999 .

[24]  Gian Paolo Beretta Nonlinear model dynamics for closed-system, constrained, maximal-entropy-generation relaxation by energy redistribution. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  B. Andresen,et al.  Thermodynamics in finite time. I. The step-Carnot cycle , 1977 .

[26]  H. Teicher On the Mixture of Distributions , 1960 .

[27]  Dale P. Cruikshank,et al.  The Moons of Uranus, Neptune and Pluto. , 1985 .

[28]  Bjarne Andresen,et al.  Quasistatic processes as step equilibrations , 1985 .

[29]  Tommaso Toffoli,et al.  Reversible Computing , 1980, ICALP.

[30]  Neil A. Thacker,et al.  The Bhattacharyya metric as an absolute similarity measure for frequency coded data , 1998, Kybernetika.

[31]  W. Ebeling Entropy and information in processes of self-organization: uncertainty and predictability , 1993 .

[32]  Z. Jaeger,et al.  A nonlinear model for relaxation in excited closed physical systems , 2002 .