Heteroclinical Repellers Imply Chaos

In this paper, we prove that chaos in the sense of Li–Yorke and of Devaney is prevalent in discrete systems admitting the so-called heteroclinical repellers, which are similar to the transversely heteroclinical orbits in both continuous and discrete systems and are corresponding to the snap-back repeller proposed by Marotto for proving the existence of chaos in higher-dimensional systems. In addition, the concept of heteroclinical repellers is generalized to be applicable to the case with degenerate transformations. In the end, some illustrative examples are provided to illustrate the theoretical results.

[1]  Sze-Bi Hsu,et al.  Snapback repellers as a cause of chaotic vibration of the wave equation with a van der Pol boundary condition and energy injection at the middle of the span , 1998 .

[2]  James A. Yorke,et al.  A Chaos Lemma , 2001, The American mathematical monthly.

[3]  Mike Boyle,et al.  Symbolic Dynamics and Matrices , 1993 .

[4]  R. Devaney An Introduction to Chaotic Dynamical Systems , 1990 .

[5]  S. Smale Diffeomorphisms with Many Periodic Points , 1965 .

[6]  M. Hirsch,et al.  Stable manifolds for hyperbolic sets , 1969 .

[7]  Xiao-Song Yang,et al.  Horseshoes in piecewise continuous maps , 2004 .

[8]  W. D. Melo,et al.  ONE-DIMENSIONAL DYNAMICS , 2013 .

[9]  Lennart Carleson,et al.  The Dynamics of the Henon Map , 1991 .

[10]  Weirui Zhao,et al.  On the Mathematical Clarification of the SNAP-Back-Repeller in High-Dimensional Systems and Chaos in a Discrete Neural Network Model , 2002, Int. J. Bifurc. Chaos.

[11]  J. Ruan,et al.  Chaotic dynamics of an integrate-and-fire circuit with periodic pulse-train input , 2003 .

[12]  F. R. Marotto On redefining a snap-back repeller , 2005 .

[13]  L. Young Stochastic stability of hyperbolic attractors , 1986, Ergodic Theory and Dynamical Systems.

[14]  Guanrong Chen,et al.  Discrete chaos in Banach spaces , 2005 .

[15]  J. Yorke,et al.  Topological Horseshoes , 2001 .

[16]  James A. Yorke,et al.  Ergodic transformations from an interval into itself , 1978 .

[17]  Michel Vellekoop,et al.  On Intervals, Transitivity = Chaos , 1994 .

[18]  Guanrong Chen,et al.  Chaotification via Feedback: The Discrete Case , 2003 .

[19]  F. R. Marotto,et al.  Perturbations of stable and chaotic difference equations , 1979 .

[20]  Guanrong Chen,et al.  Chaos of discrete dynamical systems in complete metric spaces , 2004 .

[21]  Lai-Sang Young,et al.  Decay of correlations for certain quadratic maps , 1992 .

[22]  F. R. Marotto Snap-back repellers imply chaos in Rn , 1978 .

[23]  K. Aihara,et al.  Chaos and asymptotical stability in discrete-time neural networks , 1997, chao-dyn/9701020.

[24]  H. Weiss,et al.  A geometric criterion for positive topological entropy , 1995 .

[25]  C. Robinson Dynamical Systems: Stability, Symbolic Dynamics, and Chaos , 1994 .

[26]  Garry Howell,et al.  An Introduction to Chaotic dynamical systems. 2nd Edition, by Robert L. Devaney , 1990 .

[27]  D. Chillingworth DYNAMICAL SYSTEMS: STABILITY, SYMBOLIC DYNAMICS AND CHAOS , 1998 .

[28]  K. Mitsubori,et al.  Mutually pulse-coupled chaotic circuits by using dependent switched capacitors , 2000 .

[29]  Pat Touhey,et al.  YET ANOTHER DEFINITION OF CHAOS , 1997 .

[30]  J. Banks,et al.  On Devaney's definition of chaos , 1992 .

[31]  Rufus Bowen,et al.  On axiom A diffeomorphisms , 1975 .

[32]  Changpin Li,et al.  On the Marotto–Li–Chen theorem and its application to chaotification of multi-dimensional discrete dynamical systems , 2003 .

[33]  J. Yorke,et al.  Period Three Implies Chaos , 1975 .

[34]  Changpin Li,et al.  An improved version of the Marotto Theorem , 2003 .

[35]  B. Aulbach,et al.  On Three Definitions of Chaos , 2001 .