Pseudo-Hammerstein model based identification for rate-dependent hysteresis

A pseudo-Hammerstein model based identification scheme is proposed for rate-dependent hysteresis. In this strategy, the pseudo-Hammerstein model constituted by a nonlinear moving average model with exogenous inputs(NMAX) in series with an auto-regressive moving average(ARMA) model is presented to describe the dynamic behavior of rate-dependent hysteresis. In view of the multi-valued mapping of hysteresis, a hysteretic operator is introduced to establish an expanded input space for the NMAX model. Based on the key term separation principle, the recursive least squares(RLS) algorithm is employed to accomplish an on-line identification for the auto-regressive(AR) parameters of the ARMA model. The relevant Levenberg-Marquardt (L-M) algorithm is developed to acquire an appropriate structure and the remaining parameters of the pseudo-Hammerstein model. Finally, the numerical results on a Duhem model of the piezoelectric actuators have validated the effectiveness of the proposed model.

[1]  Yonghong Tan,et al.  RBF neural networks hysteresis modelling for piezoceramic actuator using hybrid model , 2007 .

[2]  Wei Tech Ang,et al.  Feedforward Controller With Inverse Rate-Dependent Model for Piezoelectric Actuators in Trajectory-Tracking Applications , 2007, IEEE/ASME Transactions on Mechatronics.

[3]  R. Ben Mrad,et al.  A model for voltage-to-displacement dynamics in piezoceramic actuators subject to dynamic-voltage excitations , 2002 .

[4]  Jozef Vörös,et al.  Modeling and identification of systems with backlash , 2010, Autom..

[5]  Zhang Chengjin,et al.  Modeling and control of rate-dependent hysteresis in piezoelectric actuators , 2013, Proceedings of the 32nd Chinese Control Conference.

[6]  Yonghong Tan,et al.  Modeling Hysteresis and Its Inverse Model Using Neural Networks Based on Expanded Input Space Method , 2008, IEEE Transactions on Control Systems Technology.

[7]  B. D. Coleman,et al.  A constitutive relation for rate-independent hysteresis in ferromagnetically soft materials , 1986 .

[8]  Yonghong Tan,et al.  Modeling hysteresis in piezoelectric actuators using NARMAX models , 2009 .

[9]  T.,et al.  Training Feedforward Networks with the Marquardt Algorithm , 2004 .

[10]  Yonghong Tan,et al.  Diagonal recurrent neural network with modified backlash operators for modeling of rate-dependent hysteresis in piezoelectric actuators , 2008 .

[11]  魏强 Wei Qiang,et al.  Modeling and control of piezo-stage using neural networks , 2012 .

[12]  Zhen Zhang,et al.  On Generalized Dynamic Preisach Operator With Application to Hysteresis Nonlinear Systems , 2011, IEEE Transactions on Control Systems Technology.

[13]  Hui Chen,et al.  A neural networks based model for rate-dependent hysteresis for piezoceramic actuators , 2008 .

[14]  Limin Zhu,et al.  Modeling of rate-dependent hysteresis in piezoelectric actuators using a family of ellipses , 2011 .

[15]  U-Xuan Tan,et al.  Tracking Control of Hysteretic Piezoelectric Actuator using Adaptive Rate-Dependent Controller. , 2009, Sensors and actuators. A, Physical.

[16]  Yangmin Li,et al.  Modeling and High Dynamic Compensating the Rate-Dependent Hysteresis of Piezoelectric Actuators via a Novel Modified Inverse Preisach Model , 2013, IEEE Transactions on Control Systems Technology.

[17]  Qingsong Xu,et al.  Identification and Compensation of Piezoelectric Hysteresis Without Modeling Hysteresis Inverse , 2013, IEEE Transactions on Industrial Electronics.

[18]  Qing-Long Han,et al.  Network-Based Synchronization of Delayed Neural Networks , 2013, IEEE Transactions on Circuits and Systems I: Regular Papers.

[19]  Peiyue Li,et al.  A simple fuzzy system for modelling of both rate-independent and rate-dependent hysteresis in piezoelectric actuators , 2013 .

[20]  Yonghong Tan,et al.  Modeling of hysteresis in piezoelectric actuators using neural networks , 2009 .

[21]  Xinliang Zhang,et al.  A hybrid model for rate-dependent hysteresis in piezoelectric actuators , 2010 .

[22]  Yonghong Tan,et al.  Nonlinear Modeling and Decoupling Control of XY Micropositioning Stages With Piezoelectric Actuators , 2013, IEEE/ASME Transactions on Mechatronics.

[23]  Si-Lu Chen,et al.  Development of an Approach Toward Comprehensive Identification of Hysteretic Dynamics in Piezoelectric Actuators , 2013, IEEE Transactions on Control Systems Technology.

[24]  Qingsong Xu,et al.  Rate-Dependent Hysteresis Modeling and Control of a Piezostage Using Online Support Vector Machine and Relevance Vector Machine , 2012, IEEE Transactions on Industrial Electronics.

[25]  Xinlong Zhao,et al.  Dynamic Modeling of Rate-dependent Hysteresis in Piezoelectric Actuators Based on Expanded Input Space Method , 2010 .

[26]  耿洁 Geng Jie,et al.  Hammerstein-based model of piezoceramic actuator and its identification , 2012 .

[27]  Han Ding,et al.  Motion Control of Piezoelectric Positioning Stages: Modeling, Controller Design, and Experimental Evaluation , 2013, IEEE/ASME Transactions on Mechatronics.

[28]  Xuanju Dang,et al.  Neural networks dynamic hysteresis model for piezoceramic actuator based on hysteresis operator of first-order differential equation , 2005 .

[29]  Yonghong Tan,et al.  Neural networks based identification and compensation of rate-dependent hysteresis in piezoelectric actuators , 2010 .

[30]  Y. Cao,et al.  A Novel Discrete ARMA-Based Model for Piezoelectric Actuator Hysteresis , 2012, IEEE/ASME Transactions on Mechatronics.

[31]  Gregory D. Buckner,et al.  Modeling piezoelectric actuators with Hysteretic Recurrent Neural Networks , 2010 .

[32]  Dawei Zhang,et al.  Rate-dependent hysteresis modeling and compensation of piezo-driven flexure-based mechanism , 2012 .

[33]  Qing-Long Han,et al.  Global Asymptotic Stability for a Class of Generalized Neural Networks With Interval Time-Varying Delays , 2011, IEEE Trans. Neural Networks.

[34]  M. Al Janaideh,et al.  Inverse Rate-Dependent Prandtl–Ishlinskii Model for Feedforward Compensation of Hysteresis in a Piezomicropositioning Actuator , 2013, IEEE/ASME Transactions on Mechatronics.