Space Variant Blind Image Restoration

We are interested in blind restoration of optical space variant blurred Poissonian images. For exam- ple, blur variation is due to refractive index mismatch in three-dimensional fluorescence microscopy or due to atmospheric turbulence in astrophysical images. In this work, the space variant point spread function (PSF) is approximated by a convex combination of a set of space invariant blurring functions. The latter is jointly estimated with the image by optimizing a given criterion including l1 and l2 norms for regularizing the image and the PSFs. We prove, in the continuous setting, the existence of a solution to this optimization problem. We then propose an alternating optimization algorithm based on a scaled gradient projection method. We show the efficiency of the proposed method on simulated and real optical images.

[1]  Jean-Luc Starck,et al.  Astronomical image and data analysis , 2002 .

[2]  Xiang Zhu,et al.  Automatic Parameter Selection for Denoising Algorithms Using a No-Reference Measure of Image Content , 2010, IEEE Transactions on Image Processing.

[3]  Bernhard Schölkopf,et al.  Efficient filter flow for space-variant multiframe blind deconvolution , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[4]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[5]  Nassir Navab,et al.  A New and General Method for Blind Shift-Variant Deconvolution of Biomedical Images , 2007, MICCAI.

[6]  Josiane Zerubia,et al.  Richardson–Lucy algorithm with total variation regularization for 3D confocal microscope deconvolution , 2006, Microscopy research and technique.

[7]  Mostafa Kaveh,et al.  A regularization approach to joint blur identification and image restoration , 1996, IEEE Trans. Image Process..

[8]  J. Sivak,et al.  Spherical aberration of the crystalline lens , 1983, Vision Research.

[9]  Frédo Durand,et al.  Understanding and evaluating blind deconvolution algorithms , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[10]  James B. Pawley,et al.  Fundamental Limits in Confocal Microscopy , 2006 .

[11]  Arjan Kuijper,et al.  Scale Space and Variational Methods in Computer Vision , 2013, Lecture Notes in Computer Science.

[12]  Mohamed-Jalal Fadili,et al.  A quasi-Newton proximal splitting method , 2012, NIPS.

[13]  Subhasis Chaudhuri,et al.  MRF model-based identification of shift-variant point spread function for a class of imaging systems , 1999, Signal Process..

[14]  S. Gibson,et al.  Diffraction by a circular aperture as a model for three-dimensional optical microscopy. , 1989, Journal of the Optical Society of America. A, Optics and image science.

[15]  K. Egiazarian,et al.  Blind image deconvolution , 2007 .

[16]  Mostafa Kaveh,et al.  Blind image restoration by anisotropic regularization , 1999, IEEE Trans. Image Process..

[17]  Ferréol Soulez,et al.  Fast model of space-variant blurring and its application to deconvolution in astronomy , 2011, 2011 18th IEEE International Conference on Image Processing.

[18]  Nelly Pustelnik,et al.  Nested Iterative Algorithms for Convex Constrained Image Recovery Problems , 2008, SIAM J. Imaging Sci..

[19]  M. Bertero,et al.  Efficient gradient projection methods for edge-preserving removal of Poisson noise , 2009 .

[20]  D. Malacara-Hernández,et al.  PRINCIPLES OF OPTICS , 2011 .

[21]  Martin Welk,et al.  Fast and Robust linear motion deblurring , 2012, Signal Image Video Process..

[22]  L. Zanni,et al.  New adaptive stepsize selections in gradient methods , 2008 .

[23]  P. Pankajakshan Blind Deconvolution for Confocal Laser Scanning Microscopy , 2009 .

[24]  Gabriele Steidl,et al.  Deblurring Poissonian images by split Bregman techniques , 2010, J. Vis. Commun. Image Represent..

[25]  John McGowan,et al.  A Parallel Product-Convolution approach for representing the depth varying Point Spread Functions in 3D widefield microscopy based on principal component analysis. , 2010, Optics express.

[26]  Haichao Zhang,et al.  Non-Uniform Camera Shake Removal Using a Spatially-Adaptive Sparse Penalty , 2013, NIPS.

[27]  S. Bonettini Inexact block coordinate descent methods with application to non-negative matrix factorization , 2011 .

[28]  I Cox,et al.  Soft Contact Lens-Induced Longitudinal Spherical Aberration and Its Effect on Contrast Sensitivity , 1990, Optometry and vision science : official publication of the American Academy of Optometry.

[29]  José M. Bioucas-Dias,et al.  Restoration of Poissonian Images Using Alternating Direction Optimization , 2010, IEEE Transactions on Image Processing.

[30]  C. Vogel Computational Methods for Inverse Problems , 1987 .

[31]  S. Gibson,et al.  Experimental test of an analytical model of aberration in an oil-immersion objective lens used in three-dimensional light microscopy. , 1992, Journal of the Optical Society of America. A, Optics and image science.

[32]  Shuai Yuan,et al.  3D fluorescence microscopy imaging accounting for depth-varying point-spread functions predicted by a strata interpolation method and a principal component analysis method , 2011, BiOS.

[33]  J. Borwein,et al.  Two-Point Step Size Gradient Methods , 1988 .

[34]  Nahum Kiryati,et al.  Restoration of Images with Piecewise Space-Variant Blur , 2007, SSVM.

[35]  Patrick L. Combettes,et al.  Alternating proximal algorithm for blind image recovery , 2010, 2010 IEEE International Conference on Image Processing.

[36]  Gilles Aubert,et al.  Blind depth-variant blur removal in confocal microscopy , 2013, 2013 IEEE 10th International Symposium on Biomedical Imaging.

[37]  F. Aghdasi,et al.  Reduction of boundary artifacts in image restoration , 1996, IEEE Trans. Image Process..

[38]  Luca Zanni,et al.  A discrepancy principle for Poisson data , 2010 .

[39]  Laure Blanc-Féraud,et al.  Sparse Poisson Noisy Image Deblurring , 2012, IEEE Transactions on Image Processing.

[40]  Dianne P. O'Leary,et al.  Restoring Images Degraded by Spatially Variant Blur , 1998, SIAM J. Sci. Comput..

[41]  Reginald L. Lagendijk,et al.  Block-adaptive image identification and restoration , 1991, [Proceedings] ICASSP 91: 1991 International Conference on Acoustics, Speech, and Signal Processing.

[42]  L. Shepp,et al.  Maximum Likelihood Reconstruction for Emission Tomography , 1983, IEEE Transactions on Medical Imaging.

[43]  Bernhard Schölkopf,et al.  Space-Variant Single-Image Blind Deconvolution for Removing Camera Shake , 2010, NIPS.

[44]  Laure Blanc-Féraud,et al.  Modeling and removing depth variant blur in 3D fluorescence microscopy , 2012, 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[45]  Eero P. Simoncelli,et al.  Image quality assessment: from error visibility to structural similarity , 2004, IEEE Transactions on Image Processing.

[46]  Chrysanthe Preza,et al.  Depth-variant maximum-likelihood restoration for three-dimensional fluorescence microscopy. , 2004, Journal of the Optical Society of America. A, Optics, image science, and vision.

[47]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[48]  H. P. Lee,et al.  Blind restoration of images degraded by space-variant blurs using iterative algorithms for both blur identification and image restoration , 1997, Image Vis. Comput..

[49]  L. Zanni,et al.  A scaled gradient projection method for constrained image deblurring , 2008 .

[50]  Alessandra Staglianò,et al.  Analysis of an approximate model for Poisson data reconstruction and a related discrepancy principle , 2011 .

[51]  S. Inoué,et al.  Foundations of Confocal Scanned Imaging in Light Microscopy , 2006 .

[52]  Mohamed-Jalal Fadili,et al.  A Proximal Iteration for Deconvolving Poisson Noisy Images Using Sparse Representations , 2008, IEEE Transactions on Image Processing.

[53]  Pierre Kornprobst,et al.  Mathematical problems in image processing - partial differential equations and the calculus of variations , 2010, Applied mathematical sciences.

[54]  Wotao Yin,et al.  A Block Coordinate Descent Method for Regularized Multiconvex Optimization with Applications to Nonnegative Tensor Factorization and Completion , 2013, SIAM J. Imaging Sci..

[55]  Bernhard Schölkopf,et al.  Blind Correction of Optical Aberrations , 2012, ECCV.

[56]  James G. Nagy,et al.  BLIND ITERATIVE RESTORATION OF IMAGES WITH SPATIALLY-VARYING BLUR , 2005 .