Cyclopropenium (C3H3)+ as an Aromatic Alternative A-Site Cation for Hybrid Halide Perovskite Architectures

Hybrid halide perovskites are an emerging class of photovoltaic materials, boasting high solar efficiencies from relatively simple preparations. However, the chemical diversity of the A-site organic cation is limited, generally due to steric constraints of the (PbI3)− cage. Herein we describe the use of a non-benzenoid Huckel aromatic, (C3H3)+, as a viable alternative to the readily employed methylammonium, formamidinium, and guanidinium A-site cations. (C3H3)+ may lead to greater moisture stability due to the lack of an acidic proton relative to the current (H–NR3)+-based systems while still boasting a narrow electronic band gap (Eg = 1.5 eV) and mobile holes and electrons (mh* = −1.27 and me* = 0.77, respectively).

[1]  M. Johnston,et al.  Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells , 2014 .

[2]  E. Mosconi,et al.  Interplay of Orientational Order and Electronic Structure in Methylammonium Lead Iodide: Implications for Solar Cell Operation , 2014 .

[3]  Yuanyuan Zhou,et al.  Direct Observation of Ferroelectric Domains in Solution-Processed CH3NH3PbI3 Perovskite Thin Films. , 2014, The journal of physical chemistry letters.

[4]  Mercouri G Kanatzidis,et al.  Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. , 2013, Inorganic chemistry.

[5]  Aron Walsh,et al.  Assessment of polyanion (BF4− and PF6−) substitutions in hybrid halide perovskites , 2015 .

[6]  I. Tanaka,et al.  First principles phonon calculations in materials science , 2015, 1506.08498.

[7]  D. Ginger,et al.  Impact of microstructure on local carrier lifetime in perovskite solar cells , 2015, Science.

[8]  Xiao Cheng Zeng,et al.  Thin-Film Transformation of NH4 PbI3 to CH3 NH3 PbI3 Perovskite: A Methylamine-Induced Conversion-Healing Process. , 2016, Angewandte Chemie.

[9]  Fan Zheng,et al.  Ferroelectric Domain Wall Induced Band Gap Reduction and Charge Separation in Organometal Halide Perovskites. , 2015, The journal of physical chemistry letters.

[10]  H. Ogoshi,et al.  Stability and ring deformation vibration of cyclopropenium ions , 1973 .

[11]  Jon M. Azpiroz,et al.  Ab Initio Molecular Dynamics Simulations of Methylammonium Lead Iodide Perovskite Degradation by Water , 2015 .

[12]  Shweta Agarwala,et al.  Perovskite Solar Cells: Beyond Methylammonium Lead Iodide. , 2015, The journal of physical chemistry letters.

[13]  R. Kerber,et al.  Substituent effects on cyclopropenium ions , 1973 .

[14]  T. Bein,et al.  Stabilization of the Trigonal High-Temperature Phase of Formamidinium Lead Iodide. , 2015, The journal of physical chemistry letters.

[15]  Daniel J. Clark,et al.  Hybrid Germanium Iodide Perovskite Semiconductors: Active Lone Pairs, Structural Distortions, Direct and Indirect Energy Gaps, and Strong Nonlinear Optical Properties. , 2015 .

[16]  A. Walsh,et al.  Lattice dynamics and vibrational spectra of the orthorhombic, tetragonal, and cubic phases of methylammonium lead iodide , 2015, 1504.07508.

[17]  J. Groves,et al.  Cyclopropenyl Cation. Synthesis and Characterization , 1970 .

[18]  R. Wyckoff The crystal structures of monomethyl ammonium chlorostannate and chloroplatinate , 1928 .

[19]  H. Ogoshi,et al.  Vibrational spectra of cyclopropenium ions , 1974 .

[20]  R. West,et al.  Fluorinated cyclopropenes and cyclopropenium ions , 1973 .

[21]  T. Lambert,et al.  Phase-transfer and other types of catalysis with cyclopropenium ions. , 2015, Chemistry.

[22]  W. Lauer Non-Benzenoid Aromatic Compounds. , 1960 .

[23]  Barrett E. Eichler,et al.  Synthesis and Characterization of , 2001, Angewandte Chemie.

[24]  Jinsong Huang,et al.  Understanding the physical properties of hybrid perovskites for photovoltaic applications , 2017 .

[25]  A. Walsh,et al.  Can Pb-Free Halide Double Perovskites Support High-Efficiency Solar Cells? , 2016, ACS energy letters.

[26]  Christopher H. Hendon,et al.  Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut , 2015, Nano letters.

[27]  R. Kostikov,et al.  THE CYCLOPROPENYL CATION , 1967 .

[28]  N. Park,et al.  Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% , 2012, Scientific Reports.

[29]  Yang Yang,et al.  Guanidinium: A Route to Enhanced Carrier Lifetime and Open-Circuit Voltage in Hybrid Perovskite Solar Cells. , 2016, Nano letters.

[30]  Kato L. Killops,et al.  The evolution of cyclopropenium ions into functional polyelectrolytes , 2015, Nature Communications.

[31]  Lijun Zhang,et al.  Fast Diffusion of Native Defects and Impurities in Perovskite Solar Cell Material CH3NH3PbI3 , 2016 .

[32]  Aron Walsh,et al.  Structural and electronic properties of hybrid perovskites for high-efficiency thin-film photovoltaics from first-principles , 2013, 1309.4215.

[33]  Y. Qi,et al.  Thermal degradation of CH3NH3PbI3 perovskite into NH3 and CH3I gases observed by coupled thermogravimetry–mass spectrometry analysis , 2016 .

[34]  M. Grätzel,et al.  Thermal Behavior of Methylammonium Lead- trihalide Perovskite Photovoltaic Light Harvesters , 2014 .

[35]  H. Snaith Perovskites: The Emergence of a New Era for Low-Cost, High-Efficiency Solar Cells , 2013 .

[36]  A. Walsh,et al.  Cubic Perovskite Structure of Black Formamidinium Lead Iodide, α-[HC(NH2)2]PbI3, at 298 K , 2015, The Journal of Physical Chemistry Letters.

[37]  Dong Uk Lee,et al.  Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells , 2017, Science.

[38]  Aron Walsh,et al.  Electronic structure of hybrid halide perovskite photovoltaic absorbers , 2014, 1401.6993.

[39]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[40]  E. Sargent,et al.  Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals , 2015, Science.

[41]  R. Palgrave,et al.  On the application of the tolerance factor to inorganic and hybrid halide perovskites: a revised system , 2016, Chemical science.

[42]  Aron Walsh,et al.  Molecular ferroelectric contributions to anomalous hysteresis in hybrid perovskite solar cells , 2014, 1405.5810.

[43]  M. Green,et al.  The emergence of perovskite solar cells , 2014, Nature Photonics.

[44]  Aron Walsh,et al.  Atomistic Origins of High-Performance in Hybrid Halide Perovskite Solar Cells , 2014, Nano letters.

[45]  T. Hansen,et al.  Complete structure and cation orientation in the perovskite photovoltaic methylammonium lead iodide between 100 and 352 K. , 2015, Chemical communications.

[46]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.