Input-output feedback linearization of time-delay systems

In this note, the input-output linearization problem (IOLP) for a class of single-input-single-output nonlinear systems with multiple delays in the input, the output, and the state is studied. The problem is solved by means of various static or dynamic compensators, including state and output feedback. The mathematical setting is based on some noncommutative algebraic tools and the introduction of a nonlinear version of the so-called Roesser models for this class of systems. These are claimed to be the cornerstones for studying nonlinear time-delay systems. Necessary and sufficient conditions are given for the existence of a static or pure shift output feedback which solves the IOLP. Sufficient conditions for the existence of a dynamic state feedback solution are included as well.

[1]  Claude H. Moog,et al.  Disturbance Decoupling for Time-Delay Nonlinear Systems: Dynamic Approach 1 , 1998 .

[2]  Xiaohua Xia,et al.  Analysis of nonlinear time-delay systems using modules over non-commutative rings , 2002, Autom..

[3]  P. Picard Sur l'observabilite et la commande des systemes lineaires a retards, modelises sur un anneau , 1996 .

[4]  Rabah Rabah,et al.  Structure at infinity, model matching and disturbance rejection for linear systems with delays , 1993, Kybernetika.

[5]  Claude H. Moog,et al.  On the Input-Output Linearization for Nonlinear Time-Delay Systems , 1998 .

[6]  Luis Alejandro Marquez-Martinez Analyse et commande de systèmes non linéaires à retards , 2000 .

[7]  C. DeWitt-Morette,et al.  Analysis, manifolds, and physics , 1977 .

[8]  A. Isidori,et al.  On the synthesis of linear input-output responses for nonlinear systems , 1984 .

[9]  Luis Alejandro Marquez-Martinez Note sur l'accessibilité des systèmes non linéaires à retards , 1999 .

[10]  John L. Casti,et al.  Introduction to the theory and application of differential equations with deviating arguments , 1973 .

[11]  C.H. Moog,et al.  Bi-causal solutions to the disturbance decoupling problem for time-delay nonlinear systems , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[12]  Xiaohua Xia,et al.  Input output linearization of nonlinear systems by output feedback , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[13]  Marinus A. Kaashoek,et al.  The band method and generalized Carathéodory-Toeplitz interpolation at operator points , 1999 .

[14]  Michel Fliess,et al.  Interpretation and Comparison of Various Types of Delay System Controllabilities 1 , 1995 .

[15]  Arthur E. Frazho,et al.  A band method approach to a positive expansion problem in a unitary dilation setting , 2002 .

[16]  Franck Plestan Linearisation par injection d'entree-sortie generalisee et synthese d'observateurs , 1995 .

[17]  A. Isidori Nonlinear Control Systems , 1985 .

[18]  Joachim Rudolph,et al.  Flatness-based control of nonlinear delay systems: A chemical reactor example , 1998 .

[19]  C. Foias,et al.  The commutant lifting approach to interpolation problems , 1990 .

[20]  Anna Maria Perdon,et al.  The Disturbance Decoupling Problem for Systems Over a Ring , 1995 .

[21]  X Mao Exponential stability of nonlinear differential delay equations , 1996 .

[22]  C. Moog,et al.  Nonlinear Control Systems: An Algebraic Setting , 1999 .

[23]  H. Helson,et al.  Prediction theory and Fourier Series in several variables , 1958 .

[24]  P. J. Sherman,et al.  A new approach for determining the spectral data of multichannel harmonic signals in noise , 1990, Math. Control. Signals Syst..

[25]  M. Fliess Some remarks on nonlinear input-output systems with delays , 1989 .

[26]  Martín Velasco-Villa,et al.  The disturbance decoupling problem for time-delay nonlinear systems , 2000, IEEE Trans. Autom. Control..

[27]  Tryphon T. Georgiou,et al.  Spectral estimation via selective harmonic amplification , 2001, IEEE Trans. Autom. Control..