Line formation in solar granulation VI. [Cl], Cl, CH and C2 lines and the photospheric C abundance

The solar photospheric carbon abundance has been determined from (C ), C , CH vibration-rotation, CH A-X electronic and C2 Swan electronic lines by means of a time-dependent, 3D, hydrodynamical model of the solar atmosphere. Departures from LTE have been considered for the C  lines. These turned out to be of increasing importance for stronger lines and are crucial to remove a trend in LTE abundances with the strengths of the lines. Very gratifying agreement is found among all the atomic and molecular abundance diagnostics in spite of their widely different line formation sensitivities. The mean value of the solar carbon abundance based on the four primary abundance indicators ((C ), C , CH vibration-rotation, C2 Swan) is logC = 8.39 ± 0.05, including our best estimate of possible systematic errors. Consistent results also come from the CH electronic lines, which we have relegated to a supporting role due to their sensitivity to the line broadening. The new 3D based solar C abundance is significantly lower than previously estimated in studies using 1D model atmospheres.

[1]  D. F. Gray,et al.  The Observation and Analysis of Stellar Photospheres , 2021 .

[2]  Ralph S. Sutherland,et al.  Astrophysics of the Diffuse Universe , 2004 .

[3]  C. Prieto,et al.  Center-to-limb variation of solar line profiles as a test of NLTE line formation calculations , 2004, astro-ph/0405154.

[4]  C. Prieto,et al.  Line formation in solar granulation IV. (O I), O I and OH lines and the photospheric O abundance , 2003, astro-ph/0312290.

[5]  M. Asplund Line formation in solar granulation V. Missing UV-opacity and the photospheric Be abundance , 2003, astro-ph/0312291.

[6]  M. Asplund,et al.  The Evolution of the C/O Ratio in Metal-poor Halo Stars , 2003, astro-ph/0310472.

[7]  M. Asplund,et al.  Inelastic H+Li and H-+Li+ collisions and non-LTE Li I line formation in stellar atmospheres , 2003, astro-ph/0308170.

[8]  K. Lodders Solar System Abundances and Condensation Temperatures of the Elements , 2003 .

[9]  G. H'ebrard,et al.  Oxygen Gas-Phase Abundance Revisited , 2003, astro-ph/0303586.

[10]  V. Hill,et al.  The Extremely Metal-poor, Neutron Capture-rich Star CS 22892-052: A Comprehensive Abundance Analysis , 2003, astro-ph/0303542.

[11]  Institute of Theoretical Astrophysics,et al.  Nonequilibrium CO Chemistry in the Solar Atmosphere , 2003, astro-ph/0303460.

[12]  M. Asplund,et al.  Multi-level 3D non-LTE computations of lithium lines in the metal-poor halo stars HD 140283 and HD 84937 , 2003, astro-ph/0302406.

[13]  C. Chiappini,et al.  Oxygen, carbon and nitrogen evolution in galaxies , 2002, astro-ph/0209627.

[14]  T. Ayres Does the Sun Have a Full-Time COmosphere? , 2002 .

[15]  C. Prieto,et al.  A Reappraisal of the Solar Photospheric C/O Ratio , 2002, astro-ph/0206089.

[16]  D. Meyer,et al.  Interstellar Abundance Standards Revisited , 2001 .

[17]  R. Wimmer–Schweingruber Solar and Galactic Composition , 2001 .

[18]  M. Asplund,et al.  On OH line formation and oxygen abundances in metal-poor stars , 2001, astro-ph/0104071.

[19]  N. Shchukina,et al.  The Iron Line Formation Problem in Three-dimensional Hydrodynamic Models of Solar-like Photospheres , 2001 .

[20]  H. Uitenbroek,et al.  The CO Fundamental Vibration-Rotation Lines in the Solar Spectrum. II. Non-LTE Transfer Modeling in Static and Dynamic Atmospheres , 2000 .

[21]  H. Uitenbroek The CO Fundamental Vibration-Rotation Lines in the Solar Spectrum. I. Imaging Spectroscopy and Multidimensional LTE Modeling , 2000 .

[22]  A. K. Belyaev,et al.  Ab initio cross sections for low-energy inelastic H+Na collisions , 1999 .

[23]  H. C. Stempels,et al.  VALD{2: Progress of the Vienna Atomic Line Data Base ? , 1999 .

[24]  Robert F. Stein,et al.  Simulations of Solar Granulation. I. General Properties , 1998 .

[25]  N. Grevesse,et al.  Standard Solar Composition , 1998 .

[26]  J. Grove,et al.  Accelerated Particle Composition and Energetics and Ambient Abundances from Gamma-Ray Spectroscopy of the 1991 June 4 Solar Flare , 1997 .

[27]  M. Jura,et al.  The Definitive Abundance of Interstellar Oxygen , 1997, astro-ph/9710163.

[28]  P. Barklem,et al.  The broadening of d–f and f–d transitions by collisions with neutral hydrogen atoms , 1997 .

[29]  M. Carlsson,et al.  Formation of Solar Calcium H and K Bright Grains , 1997 .

[30]  C. Mendoza,et al.  Atomic data from the IRON Project - XXII. Radiative rates for forbidden transitions within the ground configuration of ions in the carbon and oxygen isoelectronic sequences , 1997 .

[31]  S. Anstee,et al.  Width cross-sections for collisional broadening of s-p and p-s transitions by atomic hydrogen , 1995 .

[32]  J. Kuhn,et al.  Infrared tools for solar astrophysics: What's next? , 1995 .

[33]  M. Carlsson,et al.  Does a nonmagnetic solar chromosphere exist , 1994, astro-ph/9411036.

[34]  C. W. Bauschlicher,et al.  The dissociation energy of CN and C2 , 1994 .

[35]  É. Biémont,et al.  New f-values in C I and the CNO abundances in the sun , 1993 .

[36]  M. Carlsson,et al.  Non-LTE Radiating Acoustic Shocks and CA II K2V Bright Points , 1992 .

[37]  G. Herzberg,et al.  Molecular Spectra and Molecular Structure , 1992 .

[38]  I. Fleck,et al.  Na atom excitation in low energy H+Na collisions , 1991 .

[39]  R. Urdahl,et al.  An experimental determination of the heat of formation of C2 and the CH bond dissociation energy in C2H , 1991 .

[40]  C. B. Farmer,et al.  A new analysis of the vibration-rotation spectrum of CH from solar spectra , 1989 .

[41]  Werner Däppen,et al.  The equation of state for stellar envelopes. II - Algorithm and selected results , 1988 .

[42]  H. Werner,et al.  Vibration-rotation transition probabilities in CH+ and CD+ , 1987 .

[43]  P. Siegbahn,et al.  Erratum: A theoretical study of the radiative lifetime of the CH A 2Δ state [J. Chem. Phys. 79, 2270 (1983)] , 1986 .

[44]  Ingemar Furenlid,et al.  Solar flux atlas from 296 to 1300 nm , 1985 .

[45]  A. Sauval,et al.  A set of partition functions and equilibrium constants for 300 diatomic molecules of astrophysical interest , 1984 .

[46]  D. Lambert The abundances of the elements in the solar photosphere – VIII. Revised abundances of carbon, nitrogen and oxygen , 1978 .

[47]  H. Holweger,et al.  The photospheric barium spectrum: Solar abundance and collision broadening of Baii lines by hydrogen , 1974 .

[48]  H. Drawin Zur formelmäßigen Darstellung des Ionisierungsquerschnitts für den Atom-Atomstoß und über die Ionen-Elektronen-Rekombination im dichten Neutralgas , 1968 .

[49]  H. V. Regemorter,et al.  RATE OF COLLISIONAL EXCITATION IN STELLAR ATMOSPHERES , 1962 .

[50]  F. Hoyle,et al.  Synthesis of the Elements in Stars , 1957 .

[51]  PHOTOMETRIC ATLAS OF THE SOLAR SPECTRUM , 2005 .

[52]  J. Raymond Composition Variations in the Solar Corona and Solar Wind , 1999 .

[53]  T. Beers,et al.  Received ; Accepted , 1999 .

[54]  Bernhard Haisch,et al.  The Many Faces of the Sun : A Summary of the Results from NASA's Solar Maximum Mission , 1999 .

[55]  S. Solanki,et al.  Solar Composition and Its Evolution -- From Core to Corona , 1998 .

[56]  C. B. Farmer The ATMOS Solar Atlas , 1994 .

[57]  A. Sauval,et al.  Molecules in the sun and molecular data , 1994 .

[58]  N. Grevesse,et al.  Abundances of the elements: Meteoritic and solar , 1989 .

[59]  N. Grevesse Accurate Atomic Data and Solar Photospheric Spectroscopy , 1984 .

[60]  L. Delbouille Photometric atlas of the solar spectrum from 1850 to 10000 cm-1 , 1981 .

[61]  G. Herzberg,et al.  Constants of diatomic molecules , 1979 .

[62]  E. Avrett,et al.  Structure of the solar chromosphere. II - The underlying photosphere and temperature-minimum region , 1976 .

[63]  S. Bashkin,et al.  Atomic energy levels and Grotrian diagrams , 1975 .

[64]  J. Swings,et al.  Forbidden carbon I lines in the solar spectrum , 1967 .