Mechanical properties of nanosprings.
暂无分享,去创建一个
[1] Charles M. Lieber,et al. Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes , 1997 .
[2] M. G. Norton,et al. Silicon Carbide Nanosprings , 2003 .
[3] Luc T. Wille,et al. Elastic properties of single-walled carbon nanotubes in compression , 1997 .
[4] M. Gregory,et al. Equivalent-Continuum Modeling of Nano-Structured Materials , 2001 .
[5] W. Olson,et al. Simulating DNA at low resolution. , 1996, Current opinion in structural biology.
[6] A. F. Fonseca,et al. Solving the boundary value problem for finite Kirchhoff rods , 2002, physics/0209054.
[7] Ka Wai Wong,et al. Field-emission characteristics of SiC nanowires prepared by chemical-vapor deposition , 1999 .
[8] G. Kirchhoff,et al. Ueber das Gleichgewicht und die Bewegung eines unendlich dünnen elastischen Stabes. , 1859 .
[9] Zhong Lin Wang,et al. Spontaneous Polarization-Induced Nanohelixes, Nanosprings, and Nanorings of Piezoelectric Nanobelts , 2003 .
[10] Alain Goriely,et al. Nonlinear dynamics of filaments. III. Instabilities of helical rods , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[11] Andrew G. Glen,et al. APPL , 2001 .
[12] Hai‐feng Zhang,et al. Synthesis, Characterization, and Manipulation of Helical SiO2 Nanosprings , 2003 .
[13] A. Vaz,et al. Measurement of the elastic modulus of nanostructured gold and platinum thin films , 2003 .
[14] W. D. de Heer,et al. Carbon Nanotubes--the Route Toward Applications , 2002, Science.
[15] M. Tabor,et al. Spontaneous Helix Hand Reversal and Tendril Perversion in Climbing Plants , 1998 .
[16] X. B. Zhang,et al. A Formation Mechanism for Catalytically Grown Helix-Shaped Graphite Nanotubes , 1994, Science.
[17] Local and Global Bifurcation Analyses of a Spatial Cable Elastica , 1999 .
[18] B. M. Fulk. MATH , 1992 .
[19] 丁東鎭. 12 , 1993, Algo habla con mi voz.
[20] T Schlick,et al. Modeling superhelical DNA: recent analytical and dynamic approaches. , 1995, Current opinion in structural biology.
[21] Roger Fabian W. Pease,et al. Self‐limiting oxidation for fabricating sub‐5 nm silicon nanowires , 1994 .
[22] B. D. Coleman,et al. Elastic stability of DNA configurations. I. General theory. , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[23] J. Maddocks,et al. A Continuum Rod Model of Sequence-Dependent DNA Structure , 1996 .
[24] Alain Goriely,et al. Nonlinear dynamics of filaments I. Dynamical instabilities , 1997 .
[25] Van Haesendonck C,et al. Imaging the elastic properties of coiled carbon nanotubes with atomic force microscopy , 2000, Physical review letters.
[26] Goriely,et al. New Amplitude Equations for Thin Elastic Rods. , 1996, Physical review letters.
[27] Alain Goriely,et al. Tendril Perversion in Intrinsically Curved Rods , 2002, J. Nonlinear Sci..
[28] Rodney S. Ruoff,et al. Mechanics of a Carbon Nanocoil , 2003 .
[29] S. Iijima. Helical microtubules of graphitic carbon , 1991, Nature.
[30] R. S. Wagner,et al. VAPOR‐LIQUID‐SOLID MECHANISM OF SINGLE CRYSTAL GROWTH , 1964 .
[31] Charles M. Lieber,et al. Growth of nanowire superlattice structures for nanoscale photonics and electronics , 2002, Nature.
[32] B. D. Coleman,et al. Elastic stability of DNA configurations. II. Supercoiled plasmids with self-contact. , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[33] A. Vaz,et al. Nanostructured Gold Thin Films: Young Modulus Measurement , 2003 .