Spectroscopic-network-assisted precision spectroscopy and its application to water

[1]  W. Ubachs,et al.  Lamb-dips and Lamb-peaks in the saturation spectrum of HD. , 2019, Optics letters.

[2]  Jonathan Tennyson,et al.  Water vapour in the atmosphere of the habitable-zone eight-Earth-mass planet K2-18 b , 2019, Nature Astronomy.

[3]  J. Tennyson,et al.  Accurate empirical rovibrational energies and transitions of H216O. , 2019, Physical chemistry chemical physics : PCCP.

[4]  Daniel P Zaleski,et al.  Automated assignment of rotational spectra using artificial neural networks. , 2018, The Journal of chemical physics.

[5]  K. Eikema,et al.  SUB-DOPPLER FREQUENCY METROLOGY IN HD FOR TEST OF FUNDAMENTAL PHYSICS , 2018, Proceedings of the 73rd International Symposium on Molecular Spectroscopy.

[6]  M. Daëron,et al.  Lamb dip CRDS of highly saturated transitions of water near 1.4 μm. , 2018, The Journal of chemical physics.

[7]  K. Eikema,et al.  Sub-Doppler Frequency Metrology in HD for Tests of Fundamental Physics. , 2017, Physical review letters.

[8]  A. Császár,et al.  Cycle bases to the rescue , 2017 .

[9]  F. Meng,et al.  Comb-locked cavity ring-down saturation spectroscopy. , 2017, The Review of scientific instruments.

[10]  A. Császár,et al.  Small Molecules-Big Data. , 2016, The journal of physical chemistry. A.

[11]  P. Maddaloni,et al.  Comb-assisted cavity ring-down spectroscopy of a buffer-gas-cooled molecular beam. , 2016, Physical chemistry chemical physics : PCCP.

[12]  P. Laporta,et al.  Comb-locked Lamb-dip spectrometer , 2016, Scientific Reports.

[13]  G. Hall,et al.  Frequency-comb referenced spectroscopy of v4- and v5-excited hot bands in the 1.5 μm spectrum of C2H2 , 2015 .

[14]  L. Coudert,et al.  Analysis of the high-resolution water spectrum up to the Second Triad and to J=30 , 2014 .

[15]  A. Castrillo,et al.  Absolute frequency stabilization of an extended-cavity diode laser by means of noise-immune cavity-enhanced optical heterodyne molecular spectroscopy. , 2014, Optics letters.

[16]  Jonathan Tennyson,et al.  A database of water transitions from experiment and theory (IUPAC Technical Report) , 2014 .

[17]  Eric Herbst,et al.  Interstellar water chemistry: from laboratory to observations. , 2013, Chemical reviews.

[18]  B. Drouin,et al.  Terahertz spectroscopy of water in its second triad , 2013 .

[19]  P. Bernath,et al.  IUPAC critical evaluation of the rotational-vibrational spectra of water vapor. Part I—Energy levels and transition wavenumbers , 2013 .

[20]  Hailan Wang,et al.  Evaluating and understanding top of the atmosphere cloud radiative effects in Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) Coupled Model Intercomparison Project Phase 5 (CMIP5) models using satellite observations , 2013 .

[21]  H. Müller,et al.  Measurement and analysis of new terahertz and far-infrared spectra of high temperature water , 2012 .

[22]  Attila G. Császár,et al.  MARVEL: Measured active rotational–vibrational energy levels. II. Algorithmic improvements☆ , 2012 .

[23]  J. Tennyson,et al.  ExoMol: molecular line lists for exoplanet and other atmospheres , 2012, 1204.0124.

[24]  B. Drouin,et al.  Terahertz spectroscopy for space applications: 2.5–2.7 THz spectra of HD, H2O and NH3 , 2011 .

[25]  R. Betz,et al.  Bis(2-hydroxyphenyl)methanone , 2011, Acta crystallographica. Section E, Structure reports online.

[26]  A. Császár,et al.  Rotating full- and reduced-dimensional quantum chemical models of molecules. , 2011, The Journal of chemical physics.

[27]  M. Koshelev Collisional broadening and shifting of the 211-202 transition of H216O, H217O, H218O by atmosphere gases , 2011 .

[28]  T. I. Velichko,et al.  Critical evaluation of measured pure-rotation and rotation-vibration line positions and an experimental dataset of energy levels of 12C16O in X1Σ+ state , 2010 .

[29]  S. Mikhailenko,et al.  Critical evaluation of measured rotation-vibration transitions and an experimental dataset of energy levels of HD18O , 2009 .

[30]  Nathan R. Pillsbury,et al.  Conformational effects on excitonic interactions in a prototypical H-bonded bichromophore: bis(2-hydroxyphenyl)methane. , 2009, The journal of physical chemistry. A.

[31]  J. Gauss,et al.  The hyperfine structure in the rotational spectrum of water: Lamb-dip technique and quantum-chemical calculations , 2009 .

[32]  A. Császár,et al.  Toward black-box-type full- and reduced-dimensional variational (ro)vibrational computations. , 2009, The Journal of chemical physics.

[33]  A. Foltynowicz,et al.  Noise-immune cavity-enhanced optical heterodyne molecular spectroscopy: Current status and future potential , 2008 .

[34]  Cristina Puzzarini,et al.  Pressure-broadening of water lines in the THz frequency region: Improvements and confirmations for spectroscopic databases. Part II , 2008 .

[35]  Jonathan Tennyson,et al.  MARVEL: measured active rotational-vibrational energy levels , 2007 .

[36]  G. Golubiatnikov,et al.  Hyperfine structure of H216O and H218O measured by Lamb-dip technique in the 180-560 GHz frequency range , 2006 .

[37]  J. Tennyson A database for water transitions from experiment and theory , 2006 .

[38]  F. Matsushima,et al.  Frequency measurement of pure rotational transitions in the v2 = 1 state of H2O , 2006 .

[39]  R. Tolchenov,et al.  A high-accuracy computed water line list , 2006, astro-ph/0601236.

[40]  Robert A. Toth,et al.  Measurements of positions, strengths and self-broadened widths of H2O from 2900 to 8000 cm−1: line strength analysis of the 2nd triad bands , 2005 .

[41]  G. Golubiatnikov,et al.  Shifting and broadening parameters of the water vapor 183-GHz line (313-220) by H2O, O2, N2, CO2, H2, He, Ne, Ar, and Kr at room temperature , 2005 .

[42]  Gerrit C. Groenenboom,et al.  New applications of the genetic algorithm for the interpretation of high-resolution spectra , 2004, Canadian Journal of Chemistry.

[43]  J. Tennyson,et al.  Can ortho-para transitions for water be observed? , 2004, The Journal of chemical physics.

[44]  J. Landgraf,et al.  Forward modeling and retrieval of water vapor from the Global Ozone Monitoring Experiment: Treatment of narrowband absorption spectra , 2002 .

[45]  C. Camy-Peyret,et al.  High-Lying Rotational Levels of Water: An Analysis of the Energy Levels of the Five First Vibrational States. , 2001, Journal of molecular spectroscopy.

[46]  Ron Wehrens,et al.  Direct determination of molecular constants from rovibronic spectra with genetic algorithms , 2000 .

[47]  Jun Ye,et al.  Ultrasensitive frequency-modulation spectroscopy enhanced by a high-finesse optical cavity: theory and application to overtone transitions of C 2 H 2 and C 2 HD , 1999 .

[48]  A. F. Krupnov,et al.  Measurements of the Pressure Shift of the 110-101 Water Line at 556 GHz Produced by Mixtures of Gases , 1995 .

[49]  Kojiro Takagi,et al.  Frequency measurement of pure rotational transitions of H20 from 0.5 to 5 THz , 1995 .

[50]  P. Bernath,et al.  Water on the sun. , 1995, Science.

[51]  J. Watson THE USE OF TERM-VALUE FITS IN TESTING SPECTROSCOPIC ASSIGNMENTS , 1994 .

[52]  Robert A. Toth,et al.  nu-2 band of H2 O-16 - Line strengths and transition frequencies , 1991 .

[53]  E. Alekseev,et al.  New submillimeter rotational lines of water and its isotopes , 1987 .

[54]  J. W. C. Johns,et al.  High-resolution far-infrared (20–350-cm −1 ) spectra of several isotopic species of H 2 O , 1985 .

[55]  Frank C. De Lucia,et al.  The pure rotational spectrum of water vapor—A millimeter, submillimeter, and far infrared analysis , 1983 .

[56]  Claude Camy-Peyret,et al.  Higher ro-vibrational levels of H2O deduced from high resolution oxygen-hydrogen flame spectra between 6200 and 9100 cm-1 , 1976 .

[57]  R. Cook,et al.  Submillimeter Microwave Spectrum ofH2O16 , 1972 .

[58]  C. Huiszoon A High Resolution Spectrometer for the Shorter Millimeter Wavelength Region , 1971 .

[59]  Laboratory Observations , 1957 .

[60]  Robert S. Mulliken,et al.  Report on Notation for the Spectra of Polyatomic Molecules , 1955 .

[61]  W. Ritz On a New Law of Series Spectra , 1908 .

[62]  L. Tao,et al.  Absolute frequencies of water lines near 790 nm with 10−11 accuracy , 2018 .

[63]  E. R. Polovtseva,et al.  The HITRAN2012 molecular spectroscopic database , 2013 .

[64]  V. V. Parshin,et al.  Resonator spectroscopy of the atmosphere in the 350–500 GHz range , 2013 .

[65]  A. Vogelmann Greenhouse Effect, Atmospheric Solar Absorption and the Earth's Radiation Budget: From the Arrhenius-Langley Era to the 1990s , 2008 .

[66]  V. V. Parshin,et al.  Broadening and shifting of the 321-, 325- and 380-GHz lines of water vapor by pressure of atmospheric gases , 2007 .

[67]  Jun Ye,et al.  Ultrasensitive FM spectroscopy enhanced by a high finesse optical cavity: theory and application to overtone transitions of C2H2 and C2HD , 1999 .

[68]  S. Tashkun,et al.  Description of vibration-rotation energies of nonrigid triatomic molecules using the generating function method , 1992 .

[69]  Jean-Michel Hartmann,et al.  Temperature and perturber dependences of water vapor line-broadening. Experiments at 183 GHz; calculations below 1000 GHz , 1989 .

[70]  H. Kroto,et al.  Molecular rotation spectra , 1975 .

[71]  S. Kukolich Measurement of the Molecular g Values in H2O and D2O and Hyperfine Structure in H2O , 1969 .