Contractive Systems with Inputs

Contraction theory provides an elegant way of analyzing the behaviors of systems subject to external inputs. Under sometimes easy to check hypotheses, systems can be shown to have the incremental stability property that all trajectories converge to a unique solution. This property is especially interesting when forcing functions are periodic (a globally attracting limit cycle results), as well as in the context of establishing synchronization results. The present paper provides a self-contained introduction to some basic results, with a focus on contractions with respect to non-Euclidean metrics.

[1]  G. Dahlquist Stability and error bounds in the numerical integration of ordinary differential equations , 1961 .

[2]  J. W. Schmidt G. Dahlquist, Stability and Error Bounds in the Numerical Integration of Ordinary Differential Equations. 85 S. Stockholm 1959. K. Tekniska Högskolans Handlingar , 1961 .

[3]  F. L. Bauer,et al.  Absolute and monotonic norms , 1961 .

[4]  B. P. Demidovich THE DISSIPATIVITY OF A CERTAIN NONLINEAR SYSTEM OF DIFFERENTIAL EQUATIONS, 1 , 1961 .

[5]  吉沢 太郎 Stability theory by Liapunov's second method , 1966 .

[6]  C. Desoer,et al.  Feedback Systems: Input-Output Properties , 1975 .

[7]  吉沢 太郎 Stability theory and the existence of periodic solutions and almost periodic solutions , 1975 .

[8]  T. Ström On Logarithmic Norms , 1975 .

[9]  C. A. Desoer,et al.  Nonlinear Systems Analysis , 1978 .

[10]  Eduardo D. Sontag,et al.  Deterministic Finite Dimensional Systems , 1988 .

[11]  Eduardo D. Sontag,et al.  Mathematical Control Theory: Deterministic Finite Dimensional Systems , 1990 .

[12]  M. Vidyasagar,et al.  Nonlinear systems analysis (2nd ed.) , 1993 .

[13]  Roy D. Williams,et al.  Error estimation for numerical differential equations , 1996 .

[14]  Eduardo D. Sontag,et al.  Mathematical control theory: deterministic finite dimensional systems (2nd ed.) , 1998 .

[15]  Eduardo Sontag,et al.  Forward Completeness, Unboundedness Observability, and their Lyapunov Characterizations , 1999 .

[16]  Jean-Jacques E. Slotine,et al.  Nonlinear process control using contraction theory , 2000 .

[17]  Jean-Jacques E. Slotine,et al.  Methodological remarks on contraction theory , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[18]  Nathan van de Wouw,et al.  Convergent dynamics, a tribute to Boris Pavlovich Demidovich , 2004, Syst. Control. Lett..

[19]  Jean-Jacques E. Slotine,et al.  On partial contraction analysis for coupled nonlinear oscillators , 2004, Biological Cybernetics.

[20]  N. Wouw,et al.  Uniform Output Regulation of Nonlinear Systems: A Convergent Dynamics Approach , 2005 .

[21]  G. Söderlind,et al.  The logarithmic norm. History and modern theory , 2006 .

[22]  A. Michel,et al.  Stability of Dynamical Systems — Continuous , Discontinuous , and Discrete Systems , 2008 .

[23]  Alessandro Astolfi,et al.  Stability of Dynamical Systems - Continuous, Discontinuous, and Discrete Systems (by Michel, A.N. et al.; 2008) [Bookshelf] , 2007, IEEE Control Systems.

[24]  Eduardo D. Sontag An observation regarding systems which converge to steady states for all constant inputs, yet become chaotic with periodic inputs , 2009 .

[25]  Mario di Bernardo,et al.  Contraction Theory and Master Stability Function: Linking Two Approaches to Study Synchronization of Complex Networks , 2009, IEEE Transactions on Circuits and Systems II: Express Briefs.

[26]  Mario di Bernardo,et al.  Global Entrainment of Transcriptional Systems to Periodic Inputs , 2009, PLoS Comput. Biol..