Contractive Systems with Inputs
暂无分享,去创建一个
[1] G. Dahlquist. Stability and error bounds in the numerical integration of ordinary differential equations , 1961 .
[2] J. W. Schmidt. G. Dahlquist, Stability and Error Bounds in the Numerical Integration of Ordinary Differential Equations. 85 S. Stockholm 1959. K. Tekniska Högskolans Handlingar , 1961 .
[3] F. L. Bauer,et al. Absolute and monotonic norms , 1961 .
[4] B. P. Demidovich. THE DISSIPATIVITY OF A CERTAIN NONLINEAR SYSTEM OF DIFFERENTIAL EQUATIONS, 1 , 1961 .
[5] 吉沢 太郎. Stability theory by Liapunov's second method , 1966 .
[6] C. Desoer,et al. Feedback Systems: Input-Output Properties , 1975 .
[7] 吉沢 太郎. Stability theory and the existence of periodic solutions and almost periodic solutions , 1975 .
[8] T. Ström. On Logarithmic Norms , 1975 .
[9] C. A. Desoer,et al. Nonlinear Systems Analysis , 1978 .
[10] Eduardo D. Sontag,et al. Deterministic Finite Dimensional Systems , 1988 .
[11] Eduardo D. Sontag,et al. Mathematical Control Theory: Deterministic Finite Dimensional Systems , 1990 .
[12] M. Vidyasagar,et al. Nonlinear systems analysis (2nd ed.) , 1993 .
[13] Roy D. Williams,et al. Error estimation for numerical differential equations , 1996 .
[14] Eduardo D. Sontag,et al. Mathematical control theory: deterministic finite dimensional systems (2nd ed.) , 1998 .
[15] Eduardo Sontag,et al. Forward Completeness, Unboundedness Observability, and their Lyapunov Characterizations , 1999 .
[16] Jean-Jacques E. Slotine,et al. Nonlinear process control using contraction theory , 2000 .
[17] Jean-Jacques E. Slotine,et al. Methodological remarks on contraction theory , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).
[18] Nathan van de Wouw,et al. Convergent dynamics, a tribute to Boris Pavlovich Demidovich , 2004, Syst. Control. Lett..
[19] Jean-Jacques E. Slotine,et al. On partial contraction analysis for coupled nonlinear oscillators , 2004, Biological Cybernetics.
[20] N. Wouw,et al. Uniform Output Regulation of Nonlinear Systems: A Convergent Dynamics Approach , 2005 .
[21] G. Söderlind,et al. The logarithmic norm. History and modern theory , 2006 .
[22] A. Michel,et al. Stability of Dynamical Systems — Continuous , Discontinuous , and Discrete Systems , 2008 .
[23] Alessandro Astolfi,et al. Stability of Dynamical Systems - Continuous, Discontinuous, and Discrete Systems (by Michel, A.N. et al.; 2008) [Bookshelf] , 2007, IEEE Control Systems.
[24] Eduardo D. Sontag. An observation regarding systems which converge to steady states for all constant inputs, yet become chaotic with periodic inputs , 2009 .
[25] Mario di Bernardo,et al. Contraction Theory and Master Stability Function: Linking Two Approaches to Study Synchronization of Complex Networks , 2009, IEEE Transactions on Circuits and Systems II: Express Briefs.
[26] Mario di Bernardo,et al. Global Entrainment of Transcriptional Systems to Periodic Inputs , 2009, PLoS Comput. Biol..