Analysis of a Two-level Schwarz Method with Coarse Spaces Based on Local Dirichlet-to-Neumann Maps

Abstract Coarse grid correction is a key ingredient in order to have scalable domain decomposition methods. For smooth problems, the theory and practice of such two-level methods is well established, but this is not the case for problems with complicated variation and high contrasts in the coefficients. In a previous study, two of the authors introduced a coarse space adapted to highly heterogeneous coefficients using the low frequency modes of the subdomain DtN maps. In this work, we present a rigorous analysis of a two-level overlapping additive Schwarz method with this coarse space, which provides an automatic criterion for the number of modes that need to be added per subdomain to obtain a convergence rate of the order of the constant coefficient case. Our method is suitable for parallel implementation and its efficiency is demonstrated by numerical examples on some challenging problems with high heterogeneities for automatic partitionings.

[1]  Robert Scheichl,et al.  Analysis of FETI methods for multiscale PDEs. Part II: interface variation , 2011, Numerische Mathematik.

[2]  J. Mandel,et al.  An Iterative Method with Convergence Rate Chosen a priori , 1999 .

[3]  J. Pasciak,et al.  The Construction of Preconditioners for Elliptic Problems by Substructuring. , 2010 .

[4]  O. Widlund,et al.  Some Domain Decomposition Algorithms for Elliptic Problems , 2011 .

[5]  Olof B. Widlund,et al.  An Overlapping Schwarz Algorithm for Almost Incompressible Elasticity , 2009, SIAM J. Numer. Anal..

[6]  Hua Xiang,et al.  A Coarse Space Construction Based on Local Dirichlet-to-Neumann Maps , 2011, SIAM J. Sci. Comput..

[7]  C. Farhat,et al.  A method of finite element tearing and interconnecting and its parallel solution algorithm , 1991 .

[8]  Olof B. Widlund,et al.  Domain Decomposition Algorithms with Small Overlap , 1992, SIAM J. Sci. Comput..

[9]  François Pellegrini,et al.  PT-Scotch: A tool for efficient parallel graph ordering , 2008, Parallel Comput..

[10]  Joerg Willems,et al.  Robust Multilevel Methods for General Symmetric Positive Definite Operators , 2014, SIAM J. Numer. Anal..

[11]  Ivan G. Graham,et al.  Energy Minimizing Coarse Spaces for Two-level Schwarz Methods for Multiscale Pdes , 2008 .

[12]  Panayot S. Vassilevski,et al.  Spectral AMGe (ρAMGe) , 2003, SIAM J. Sci. Comput..

[13]  José F. Escobar The Geometry of the First Non-zero Stekloff Eigenvalue , 1997 .

[14]  Robert Scheichl,et al.  Scaling up through domain decomposition , 2009 .

[15]  O. Widlund,et al.  Hybrid domain decomposition algorithms for compressible and almost incompressible elasticity , 2009 .

[16]  O. Widlund,et al.  Multilevel Schwarz methods for elliptic problems with discontinuous coefficients in three dimensions , 1994 .

[17]  Jinchao Xu,et al.  Domain decomposition methods in science and engineering XIX , 2011 .

[18]  Hua Xiang,et al.  A two level domain decomposition preconditioner based on local Dirichlet-to-Neumann maps , 2010 .

[19]  Robert Scheichl,et al.  A robust two-level domain decomposition preconditioner for systems of PDEs , 2011 .

[20]  Eero Vainikko,et al.  Additive Schwarz with aggregation-based coarsening for elliptic problems with highly variable coefficients , 2007, Computing.

[21]  R. Nicolaides Deflation of conjugate gradients with applications to boundary value problems , 1987 .

[22]  Yalchin Efendiev,et al.  Multiscale finite element methods for high-contrast problems using local spectral basis functions , 2011, J. Comput. Phys..

[23]  Robert Scheichl,et al.  JOHANNES KEPLER UNIVERSITY LINZ Institute of Computational Mathematics Weighted Poincaré Inequalities and Applications in Domain Decomposition , 2009 .

[24]  R. Lazarov,et al.  Robust Domain Decomposition Preconditioners for Abstract Symmetric Positive Definite Bilinear Forms , 2011, 1105.1131.

[25]  Marian Brezina,et al.  Balancing domain decomposition for problems with large jumps in coefficients , 1996, Math. Comput..

[26]  Ludmil T. Zikatanov,et al.  Multilevel Methods for Elliptic Problems with Highly Varying Coefficients on Nonaligned Coarse Grids , 2012, SIAM J. Numer. Anal..

[27]  Robert Scheichl,et al.  Analysis of FETI methods for multiscale PDEs , 2008, Numerische Mathematik.

[28]  Frédéric Nataf,et al.  Spillane, N. and Dolean Maini, Victorita and Hauret, P. and Nataf, F. and Pechstein, C. and Scheichl, R. (2013) Abstract robust coarse spaces for systems of PDEs via generalized eigenproblems in the overlaps , 2018 .

[29]  Yalchin Efendiev,et al.  Domain Decomposition Preconditioners for Multiscale Flows in High Contrast Media: Reduced Dimension Coarse Spaces , 2010, Multiscale Model. Simul..

[30]  Yalchin Efendiev,et al.  Domain Decomposition Preconditioners for Multiscale Flows in High Contrast Media: Reduced Dimension Coarse Spaces , 2010, Multiscale Model. Simul..

[31]  Ludmil T. Zikatanov,et al.  Weak Approximation Properties of Elliptic Projections with Functional Constraints , 2011, Multiscale Model. Simul..

[32]  Andrea Toselli,et al.  Domain decomposition methods : algorithms and theory , 2005 .

[33]  Ivan G. Graham,et al.  Domain decomposition for multiscale PDEs , 2007, Numerische Mathematik.

[34]  Cornelis Vuik,et al.  A Comparison of Deflation and Coarse Grid Correction Applied to Porous Media Flow , 2004, SIAM J. Numer. Anal..

[35]  Xiao-Chuan Cai,et al.  A Restricted Additive Schwarz Preconditioner for General Sparse Linear Systems , 1999, SIAM J. Sci. Comput..

[36]  Moritz Kassmann,et al.  On weighted Poincaré inequalities , 2012 .

[37]  I. Graham,et al.  Robust domain decomposition algorithms for multiscale PDEs , 2007 .

[38]  Yalchin Efendiev,et al.  Spectral Element Agglomerate Algebraic Multigrid Methods for Elliptic Problems with High-Contrast Coefficients , 2011 .

[39]  J. Mandel Balancing domain decomposition , 1993 .