A Single Beta-Complex Solves All Geometry Problems in a Molecule
暂无分享,去创建一个
[1] Atsuyuki Okabe,et al. Spatial Tessellations: Concepts and Applications of Voronoi Diagrams , 1992, Wiley Series in Probability and Mathematical Statistics.
[2] Deok-Soo Kim,et al. An efficient algorithm for three-dimensional β-complex and β-shape via a quasi-triangulation , 2007, Symposium on Solid and Physical Modeling.
[3] V. Luchnikov,et al. Voronoi-Delaunay analysis of voids in systems of nonspherical particles. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[4] Deok-Soo Kim,et al. Molecular surfaces on proteins via beta shapes , 2007, Comput. Aided Des..
[5] Marina L. Gavrilova,et al. An algorithm for three‐dimensional Voronoi S‐network , 2006, J. Comput. Chem..
[6] Deok-Soo Kim,et al. Euclidean Voronoi diagram of 3D balls and its computation via tracing edges , 2005, Comput. Aided Des..
[7] Georges Voronoi. Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Deuxième mémoire. Recherches sur les parallélloèdres primitifs. , 1908 .
[8] W RuiterdeG.C.,et al. Shape in chemistry: An introduction to molecular shape and topology , 1995 .
[9] N. N. Medvedev,et al. The algorithm for three-dimensional Voronoi polyhedra , 1986 .
[10] Deok-Soo Kim,et al. Triangulation of molecular surfaces , 2009, Comput. Aided Des..
[11] Herbert Edelsbrunner,et al. Three-dimensional alpha shapes , 1992, VVS.
[12] Mark H. Overmars,et al. Spheres, molecules, and hidden surface removal , 1994, SCG '94.
[13] V. A. Luchnikov,et al. Voronoi-Delaunay analysis of normal modes in a simple model glass , 2000 .
[14] Deok-Soo Kim,et al. The beta-Shape and beta-Complex for Analysis of Molecular Structures , 2008, Generalized Voronoi Diagram.
[15] A. Poupon. Voronoi and Voronoi-related tessellations in studies of protein structure and interaction. , 2004, Current opinion in structural biology.
[16] Hans-Martin Will. Practical and efficient computation of additively weighted Voronoi cells for applications in molecular biology , 1998 .
[17] A. J. Hopfinger,et al. Conformational Properties of Macromolecules , 1973 .
[18] Frederick P. Brooks,et al. Computing smooth molecular surfaces , 1994, IEEE Computer Graphics and Applications.
[19] M. L. Connolly. Solvent-accessible surfaces of proteins and nucleic acids. , 1983, Science.
[20] Nikolai N. Medvedev,et al. Geometrical analysis of the structure of simple liquids : percolation approach , 1991 .
[21] F. Richards. The interpretation of protein structures: total volume, group volume distributions and packing density. , 1974, Journal of molecular biology.
[22] J. D. Bernal,et al. Random close-packed hard-sphere model. II. Geometry of random packing of hard spheres , 1967 .
[23] Franz Aurenhammer,et al. Power Diagrams: Properties, Algorithms and Applications , 1987, SIAM J. Comput..
[24] Deok-Soo Kim,et al. Three-dimensional beta shapes , 2006, Comput. Aided Des..
[25] Deok-Soo Kim,et al. Region-expansion for the Voronoi diagram of 3D spheres , 2006, Comput. Aided Des..
[26] Mariette Yvinec,et al. Algorithmic geometry , 1998 .
[27] Franz Aurenhammer,et al. Voronoi diagrams—a survey of a fundamental geometric data structure , 1991, CSUR.
[28] A. Goede,et al. Voronoi cell: New method for allocation of space among atoms: Elimination of avoidable errors in calculation of atomic volume and density , 1997 .
[29] H. Edelsbrunner,et al. Anatomy of protein pockets and cavities: Measurement of binding site geometry and implications for ligand design , 1998, Protein science : a publication of the Protein Society.
[30] M. L. Connolly. Analytical molecular surface calculation , 1983 .
[31] Deok-Soo Kim,et al. Recognition of docking sites on a protein using beta-shape based on Voronoi diagram of atoms , 2006, Comput. Aided Des..
[32] J. Boissonnat,et al. Algorithmic Geometry: Frontmatter , 1998 .
[33] Deok-Soo Kim,et al. Quasi-triangulation and interworld data structure in three dimensions , 2006, Comput. Aided Des..