Lyapunov stability robust analysis and robustness design for linear continuous-time systems

The linear continuous-time systems to be discussed are described by state space models with structured time-varying uncertainties. First, the explicit maximal perturbation bound for maintaining quadratic Lyapunov stability of the closed-loop systems is presented. Then, a robust design method is proposed. Given an open-loop, nominal system with information of the uncertainty structure, the proposed robust design method produces a linear constant output feedback control law which maximizes the perturbation bound for maintaining quadratic Lyapunov stability. Both the optimal results for robust analysis and robustness design can be obtained by using an efficient numerical algorithm (e.g. minimax of MATLAB) with analytic gradients given in this paper. Examples are investigated in some detail to show the improvements and advantages of the proposed methods over previous ones.

[1]  R. E. Kalman,et al.  Control System Analysis and Design Via the “Second Method” of Lyapunov: I—Continuous-Time Systems , 1960 .

[2]  Peter Lancaster,et al.  The theory of matrices , 1969 .

[3]  T. K. C. Peng,et al.  Adaptive Guaranteed Cost of Control of Systems with Uncertain Parameters , 1970 .

[4]  H. Horisberger,et al.  Regulators for linear, time invariant plants with uncertain parameters , 1976 .

[5]  G. Leitmann Guaranteed Asymptotic Stability for Some Linear Systems With Bounded Uncertainties , 1979 .

[6]  Rajni V. Patel,et al.  Quantitative measures of robustness for multivariable systems , 1980 .

[7]  C. A. Desoer,et al.  Nonlinear Systems Analysis , 1978 .

[8]  B. Barmish,et al.  On guaranteed stability of uncertain linear systems via linear control , 1981 .

[9]  Ian R. Petersen,et al.  Linear ultimate boundedness control of uncertain dynamical systems , 1983, Autom..

[10]  Sahjendra N. Singh,et al.  Nonlinear Control of Mismatched Uncertain Linear Systems and Application to Control of Aircraft , 1984 .

[11]  Rama K. Yedavalli,et al.  Improved measures of stability robustness for linear state space models , 1985 .

[12]  R. Yedavalli,et al.  Reduced conservatism in stability robustness bounds by state transformation , 1986 .

[13]  Wei-Bin Gao,et al.  A necessary and sufficient condition for the positive-definiteness of interval symmetric matrices , 1986 .

[14]  Ian R. Petersen,et al.  A riccati equation approach to the stabilization of uncertain linear systems , 1986, Autom..

[15]  Ian R. Petersen,et al.  A procedure for simultaneously stabilizing a collection of single input linear systems using non-linear state feedback control , 1987, Autom..

[16]  P. Khargonekar,et al.  Stability robustness bounds for linear state-space models with structured uncertainty , 1987 .

[17]  Sheng-De Wang,et al.  Robust control design for linear systems with uncertain parameters , 1987 .

[18]  W. Schmitendorf Designing stabilizing controllers for uncertain systems using the Riccati equation approach , 1988 .

[19]  H. Kokame,et al.  Stabilization of perturbed systems via linear optimal regulator , 1988 .

[20]  Y. H. Chen,et al.  Design of robust controllers for uncertain dynamical systems , 1988 .

[21]  S. Bhattacharyya,et al.  Robust control with structure perturbations , 1988 .

[22]  A. Y. Bilal,et al.  Stability and performance robustness for multivariable linear systems , 1989, Autom..

[23]  Dragoslav D. Šiljak,et al.  A note on robust stability bounds , 1989 .

[24]  J. S. Gibson,et al.  A first-order Lyapunov robustness method for linear systems with uncertain parameters , 1990 .

[25]  Te-Son Kuo,et al.  ROBUST LINEAR QUADRATIC OPTIMAL CONTROL FOR SYSTEMS WITH LINEAR UNCERTAINTIES , 1991 .

[26]  J. S. Gibson,et al.  A Lyapunov robustness bound for linear systems with periodic uncertainties , 1991, Autom..