The role of amorphous silicon and tunneling in heterojunction with intrinsic thin layer (HIT) solar cells

This work analyzes heterojunction with intrinsic thin layer (HIT) solar cells using numerical simulations. The differences between the device physics of cells with p- and n-type crystalline silicon (c-Si) wafers are substantial. HIT solar cells with n-type wafers essentially form a n/p/n structure, where tunneling across the junction heterointerfaces is a critical transport mechanism required to attain performance exceeding 20%. For HIT cells with p-type wafers, only tunneling at the back-contact barrier may be important. For p-wafer cells, the hydrogenated amorphous silicon (a-Si:H) between the indium tin oxide (ITO) and crystalline silicon may act as a passivating buffer layer but, otherwise, does not significantly contribute to device performance. For n-wafer cells, the carrier concentration and band alignment of this a-Si:H layer are critical to device performance.

[1]  Antonio Luque,et al.  Handbook of photovoltaic science and engineering , 2011 .

[2]  Li,et al.  Conduction- and valence-band offsets at the hydrogenated amorphous silicon-carbon/crystalline silicon interface via capacitance techniques. , 1996, Physical review. B, Condensed matter.

[3]  J. Werner,et al.  Recombination mechanisms in amorphous silicon/crystalline silicon heterojunction solar cells , 2000 .

[4]  Lee,et al.  Modulated electron-spin-resonance measurements and defect correlation energies in amorphous silicon. , 1992, Physical review letters.

[5]  S. Ashok,et al.  Spray-deposited ITO—Silicon SIS heterojunction solar cells , 1980, IEEE Transactions on Electron Devices.

[6]  W. F. V. D. Weg,et al.  Photocarrier collection in a-SiC:H/c-Si heterojunction solar cells , 1998 .

[7]  J. Sites,et al.  Efficient photovoltaic heterojunctions of indium tin oxides on silicon , 1976 .

[8]  W. Read,et al.  Statistics of the Recombinations of Holes and Electrons , 1952 .

[9]  R. Street,et al.  Hydrogenated amorphous silicon: Index , 1991 .

[10]  H. Matsuura Hydrogenated amorphous-silicon/crystalline-silicon heterojunctions: properties and applications , 1989 .

[11]  Kakalios,et al.  Electron drift mobility in doped amorphous silicon. , 1988, Physical review. B, Condensed matter.

[12]  D. Levi,et al.  Effect of emitter deposition temperature on surface passivation in hot-wire chemical vapor deposited silicon heterojunction solar cells , 2006 .

[13]  Yanfa Yan,et al.  Atomic structure and electronic properties of c-Si∕a-Si:H heterointerfaces , 2006 .

[14]  M. Taguchi,et al.  HITTM cells—high-efficiency crystalline Si cells with novel structure , 2000 .

[15]  E. Schiff Hole Mobilities and the Physics of Amorphous Silicon Solar Cells , 2006 .

[16]  Robert Hull,et al.  Properties of Crystalline Silicon , 1999 .

[17]  X. Correig,et al.  Electrical characterization of n‐amorphous/p‐crystalline silicon heterojunctions , 1996 .

[18]  R. Street,et al.  Hole carrier drift-mobility measurements in a−Si:H, and the shape of the valence-band tail , 1988 .

[19]  M. Schmidt,et al.  Efficient silicon heterojunction solar cells based on p‐ and n‐type substrates processed at temperatures < 220°C , 2006 .

[20]  Manfred Schmidt,et al.  Physical aspects of a-Si:H/c-Si hetero-junction solar cells , 2007 .

[21]  Hideyo Okushi,et al.  Electrical properties of n-amorphous/p-crystalline silicon heterojunctions , 1984 .

[22]  H. Fujiwara,et al.  Effects of a‐Si:H layer thicknesses on the performance of a‐Si:H∕c‐Si heterojunction solar cells , 2007 .

[23]  Christophe Ballif,et al.  Model for a-Si: H/c-Si interface recombination based on the amphoteric nature of silicon dangling bonds , 2007 .

[24]  H. Grubin The physics of semiconductor devices , 1979, IEEE Journal of Quantum Electronics.

[25]  W. Anderson,et al.  Influence of Defects and Band Offsets on Carrier Transport Mechanisms in Amorphous Silicon/Crystalline Silicon Heterojunction Solar Cells , 2000 .

[26]  Sadao Adachi,et al.  Optical Constants of Crystalline and Amorphous Semiconductors , 1999 .

[27]  Y. Hatanaka,et al.  Carrier transport mechanisms of p-type amorphous-n-type crystalline silicon heterojunctions , 1992 .

[28]  R. Schropp,et al.  SIGNIFICANCE OF TUNNELING IN P+ AMORPHOUS SILICON CARBIDE N CRYSTALLINE SILICON HETEROJUNCTION SOLAR CELLS , 1998 .

[29]  Influence of the band offset on the performance of photodevices based on the c-Si/a-Si:H heterostructure , 2001 .

[30]  H. Branz,et al.  Recent advances in hot-wire CVD R&D at NREL : From 18% silicon heterojunction cells to silicon epitaxy at glass-compatible temperatures , 2008 .

[31]  B. Jagannathan,et al.  Interface effects on the carrier transport and photovoltaic properties of hydrogenated amorphous silicon/crystalline silicon solar cells , 1996 .

[32]  Y. Hatanaka,et al.  Energy‐band discontinuities in a heterojunction of amorphous hydrogenated Si and crystalline Si measured by internal photoemission , 1987 .

[33]  Makoto Tanaka,et al.  Obtaining a higher Voc in HIT cells , 2005 .