Optical Properties of Organic Hazes in Water-rich Exoplanet Atmospheres: Implications for Observations with JWST

JWST has begun its scientific mission, which includes the atmospheric characterization of transiting exoplanets. Some of the first exoplanets to be observed by JWST have equilibrium temperatures below 1000 K, which is a regime where photochemical hazes are expected to form. The optical properties of these hazes, which controls how they interact with light, are critical for interpreting exoplanet observations, but relevant data are not available. Here we measure the optical properties of organic haze analogues generated in water-rich exoplanet atmosphere experiments. We report optical constants (0.4 to 28.6 μm) of organic hazes for current and future observational and modeling efforts covering the entire wavelength range of JWST instrumentation and a large part of Hubble . We use these optical constants to generate hazy model atmospheric spectra. The synthetic spectra show that differences in haze optical constants have a detectable effect on the spectra, impacting our interpretation of exoplanet observations. This study emphasizes the need to investigate the optical properties of hazes formed in different exoplanet

[1]  E. Pallé,et al.  Density, not radius, separates rocky and water-rich small planets orbiting M dwarf stars , 2022, Science.

[2]  Tucson,et al.  Identification of carbon dioxide in an exoplanet atmosphere , 2022, Nature.

[3]  A. Youngblood,et al.  Effects of UV Stellar Spectral Uncertainty on the Chemistry of Terrestrial Atmospheres , 2022, The Astrophysical Journal.

[4]  N. Izenberg,et al.  Triton Haze Analogs: The Role of Carbon Monoxide in Haze Formation , 2021, Journal of Geophysical Research: Planets.

[5]  M. Marley,et al.  A New Sedimentation Model for Greater Cloud Diversity in Giant Exoplanets and Brown Dwarfs , 2021, The Astrophysical Journal.

[6]  R. Cloutier,et al.  A More Precise Mass for GJ 1214 b and the Frequency of Multiplanet Systems Around Mid-M Dwarfs , 2021, The Astronomical Journal.

[7]  K. Ohno,et al.  Grain Growth in Escaping Atmospheres: Implications for the Radius Inflation of Super-Puffs , 2021, The Astrophysical Journal.

[8]  L. Schaefer,et al.  Water on Hot Rocky Exoplanets , 2021, 2103.07753.

[9]  S. Okuzumi,et al.  Haze Formation on Triton , 2020, The Astrophysical Journal.

[10]  T. Koskinen,et al.  3D simulations of photochemical hazes in the atmosphere of hot Jupiter HD 189733b , 2020, 2011.14022.

[11]  J. Valenti,et al.  Haze Formation in Warm H2-rich Exoplanet Atmospheres , 2020, The Planetary Science Journal.

[12]  E. Ford,et al.  A Featureless Infrared Transmission Spectrum for the Super-puff Planet Kepler-79d , 2020, The Astronomical Journal.

[13]  J. Fortney,et al.  Aerosol composition of hot giant exoplanets dominated by silicates and hydrocarbon hazes , 2020, 2005.11939.

[14]  Y. Kawashima,et al.  Super-Rayleigh Slopes in Transmission Spectra of Exoplanets Generated by Photochemical Haze , 2020, The Astrophysical Journal.

[15]  J. Valenti,et al.  Chemistry of Temperate Super-Earth and Mini-Neptune Atmospheric Hazes from Laboratory Experiments , 2020, The Planetary Science Journal.

[16]  M. Marley,et al.  Sulfur-driven haze formation in warm CO2-rich exoplanet atmospheres , 2020, Nature Astronomy.

[17]  Xi Zhang,et al.  Deflating Super-puffs: Impact of Photochemical Hazes on the Observed Mass–Radius Relationship of Low-mass Planets , 2019, The Astrophysical Journal.

[18]  J. Fortney,et al.  The Featureless Transmission Spectra of Two Super-puff Planets , 2019, The Astronomical Journal.

[19]  Jonathan Tennyson,et al.  Water vapour in the atmosphere of the habitable-zone eight-Earth-mass planet K2-18 b , 2019, Nature Astronomy.

[20]  J. Fortney,et al.  Water Vapor and Clouds on the Habitable-zone Sub-Neptune Exoplanet K2-18b , 2019, The Astrophysical Journal.

[21]  Tanya L. Myers,et al.  Obtaining the complex optical constants n and k via quantitative absorption measurements in KBr pellets , 2019, Defense + Commercial Sensing.

[22]  M. Marley,et al.  Exoplanet Reflected-light Spectroscopy with PICASO , 2019, The Astrophysical Journal.

[23]  I. Pater,et al.  Aggregate Hazes in Exoplanet Atmospheres , 2019, The Astrophysical Journal.

[24]  A. Bonomo,et al.  Growth model interpretation of planet size distribution , 2018, Proceedings of the National Academy of Sciences.

[25]  Adam Burrows,et al.  Characterization of Exoplanet Atmospheres with the Optical Coronagraph on WFIRST , 2018, The Astronomical Journal.

[26]  J. Valenti,et al.  Photochemical Haze Formation in the Atmospheres of Super-Earths and Mini-Neptunes , 2018, The Astronomical Journal.

[27]  J. Valenti,et al.  Laboratory Simulations of Haze Formation in the Atmospheres of Super-Earths and Mini-Neptunes: Particle Color and Size Distribution , 2018, 1803.01706.

[28]  J. Valenti,et al.  Haze production rates in super-Earth and mini-Neptune atmosphere experiments , 2018 .

[29]  E. Ford,et al.  Habitability of Exoplanet Waterworlds , 2018, The Astrophysical Journal.

[30]  T. Barman,et al.  An HST/STIS Optical Transmission Spectrum of Warm Neptune GJ 436b , 2018, 1801.00412.

[31]  B. Benneke,et al.  Microphysics of KCl and ZnS Clouds on GJ 1214 b , 2016, The Astrophysical Journal.

[32]  J. Lora,et al.  Atmospheric Circulation, Chemistry, and Infrared Spectra of Titan-like Exoplanets around Different Stellar Types , 2017, 1712.04069.

[33]  Masahiro Ikoma,et al.  Theoretical Transmission Spectra of Exoplanet Atmospheres with Hydrocarbon Haze: Effect of Creation, Growth, and Settling of Haze Particles. I. Model Description and First Results , 2017, 1712.02808.

[34]  D. Strobel,et al.  Haze heats Pluto’s atmosphere yet explains its cold temperature , 2017, Nature.

[35]  T. Koskinen,et al.  Aerosol properties in the atmospheres of extrasolar giant planets , 2017, 1708.09257.

[36]  S. Hörst,et al.  Carbon Monoxide Affecting Planetary Atmospheric Chemistry , 2017, 1705.08468.

[37]  S. Okuzumi,et al.  A Condensation–coalescence Cloud Model for Exoplanetary Atmospheres: Formulation and Test Applications to Terrestrial and Jovian Clouds , 2017, 1701.00917.

[38]  Drake Deming,et al.  Pale Orange Dots: The Impact of Organic Haze on the Habitability and Detectability of Earthlike Exoplanets , 2016, 1702.02994.

[39]  Wesley A. Traub,et al.  DEVELOPING ATMOSPHERIC RETRIEVAL METHODS FOR DIRECT IMAGING SPECTROSCOPY OF GAS GIANTS IN REFLECTED LIGHT. I. METHANE ABUNDANCES AND BASIC CLOUD PROPERTIES , 2016, 1604.05370.

[40]  T. Evans,et al.  A continuum from clear to cloudy hot-Jupiter exoplanets without primordial water depletion , 2015, Nature.

[41]  T. Barman,et al.  RAYLEIGH SCATTERING IN THE ATMOSPHERE OF THE WARM EXO-NEPTUNE GJ 3470B , 2015, 1511.05601.

[42]  Kerri Cahoy,et al.  THERMAL EMISSION AND REFLECTED LIGHT SPECTRA OF SUPER EARTHS WITH FLAT TRANSMISSION SPECTRA , 2015, 1511.01492.

[43]  G. Mulders,et al.  THE SNOW LINE IN VISCOUS DISKS AROUND LOW-MASS STARS: IMPLICATIONS FOR WATER DELIVERY TO TERRESTRIAL PLANETS IN THE HABITABLE ZONE , 2015, 1505.03516.

[44]  R. K. Hicks,et al.  The role of benzene photolysis in Titan haze formation , 2014 .

[45]  Drake Deming,et al.  Clouds in the atmosphere of the super-Earth exoplanet GJ 1214b , 2013, Nature.

[46]  D. Deming,et al.  A featureless transmission spectrum for the Neptune-mass exoplanet GJ 436b , 2013, Nature.

[47]  T. Barman,et al.  COMPOSITIONAL DIVERSITY IN THE ATMOSPHERES OF HOT NEPTUNES, WITH APPLICATION TO GJ 436b , 2013, The Astrophysical journal.

[48]  M. Marley,et al.  QUANTITATIVELY ASSESSING THE ROLE OF CLOUDS IN THE TRANSMISSION SPECTRUM OF GJ 1214b , 2013, 1305.4124.

[49]  M. Trainer,et al.  THE INFLUENCE OF BENZENE AS A TRACE REACTANT IN TITAN AEROSOL ANALOGS , 2013 .

[50]  J. Wahlund,et al.  Aerosol growth in Titan’s ionosphere , 2013, Proceedings of the National Academy of Sciences.

[51]  B. Bézard,et al.  Optical constants of Titan’s stratospheric aerosols in the 70–1500 cm−1 spectral range constrained by Cassini/CIRS observations , 2012 .

[52]  C. McKay,et al.  Optical constants of Titan tholins at mid-infrared wavelengths (2.5–25 μm) and the possible chemical nature of Titan’s haze particles , 2012 .

[53]  R. Yelle,et al.  The detached haze layer in Titan's mesosphere , 2008 .

[54]  F. Duvernay,et al.  Carbodiimide production from cyanamide by UV irradiation and thermal reaction on amorphous water ice. , 2005, The journal of physical chemistry. A.

[55]  Christopher P. McKay,et al.  Laboratory experiments of Titan tholin formed in cold plasma at various pressures: implications for nitrogen-containing polycyclic aromatic compounds in Titan haze , 2004 .

[56]  Christopher P. McKay,et al.  Analysis of the Time-Dependent Chemical Evolution of Titan Haze Tholin , 2002 .

[57]  Andrew S. Ackerman,et al.  Precipitating Condensation Clouds in Substellar Atmospheres , 2001, astro-ph/0103423.

[58]  Ann M. Middlebrook,et al.  Infrared optical constants of H2O ice, amorphous nitric acid solutions, and nitric acid hydrates , 1994 .

[59]  D. Lin-Vien The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules , 1991 .

[60]  Hsueh-Chia Chang,et al.  Determination of the wavelength dependence of refractive indices of flame soot , 1990, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[61]  M. W. Williams,et al.  Optical constants of organic tholins produced in a simulated Titanian atmosphere: From soft x-ray to microwave frequencies , 1984 .

[62]  C. N. R. Rao,et al.  Ultra-violet and visible spectroscopy: Chemical applications , 1974 .