On the State Minimization of Fuzzy Automata

This paper investigates the minimization problem of fuzzy automata, aiming to obtain a procedure for finding a minimal state fuzzy automaton equivalent to a given one. The decision version of the minimization problem is as follows: Given a fuzzy automaton A and a natural number k, i.e., a pair (A, k), is there a k-state fuzzy automaton equivalent to A? We prove that the above problem is decidable for fuzzy automata over totally ordered lattices and then obtain a procedure for minimizing a given fuzzy automaton. To this end, we introduce the concept of systems of fuzzy polynomial equations, present a procedure for finding solutions of these systems and, finally, reduce the above decision problem to finding a solution of a system of fuzzy polynomial equations. It is worth pointing out that although some algorithms in the literature were claimed to be minimization algorithms, the term “minimization” there did not mean state minimization in our sense, since these algorithms did not aim at a minimal fuzzy automaton but found “reasonably” small fuzzy automata.

[1]  K. Peeva,et al.  Equivalence, reduction and minimization of finite fuzzy-automata , 1981 .

[2]  Libor Polák Minimalizations of NFA Using the Universal Automaton , 2004, CIAA.

[3]  H. Carter Fuzzy Sets and Systems — Theory and Applications , 1982 .

[4]  Eugene S. Santos On reductions of maximin machines , 1972 .

[5]  Tsunehiko Kameda,et al.  On the State Minimization of Nondeterministic Finite Automata , 1970, IEEE Transactions on Computers.

[6]  Tatjana Petkovic,et al.  Fuzzy relation equations and reduction of fuzzy automata , 2010, J. Comput. Syst. Sci..

[7]  Daowen Qiu,et al.  Equivalence in automata theory based on complete residuated lattice-valued logic , 2007, Fuzzy Sets Syst..

[8]  K. Peeva Fuzzy automata and languages: theory and applications , 2004 .

[9]  Jean-Marc Champarnaud,et al.  Theoretical study and implementation of the canonical automaton , 2002, Fundam. Informaticae.

[10]  Tatjana Petkovic,et al.  Congruences and homomorphisms of fuzzy automata , 2006, Fuzzy Sets Syst..

[11]  Michael, G. Thomason,et al.  Deterministic Acceptors of Regular Fuzzy Languages , 1974, IEEE Trans. Syst. Man Cybern..

[12]  Eugene S. Santos,et al.  Max-product machines , 1972 .

[13]  John N. Mordeson,et al.  Minimization of Fuzzy Finite Automata , 1999, Inf. Sci..

[14]  Ketty Peeva,et al.  Finite 𝕃-fuzzy machines , 2004, Fuzzy Sets Syst..

[15]  W. Wechler The concept of fuzziness in automata and language theory , 1978 .

[16]  Daowen Qiu,et al.  Supervisory control of fuzzy discrete event systems: a formal approach , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[17]  Paulo Mateus,et al.  On the complexity of minimizing probabilistic and quantum automata , 2012, Inf. Comput..

[18]  Tao Jiang,et al.  Minimal NFA Problems are Hard , 1991, SIAM J. Comput..

[19]  Lotfi A. Zadeh,et al.  Note on fuzzy languages , 1969, Inf. Sci..

[20]  Karvel K. Thornber,et al.  Equivalence in knowledge representation: automata, recurrent neural networks, and dynamical fuzzy systems , 1999, Proc. IEEE.

[21]  Gin-Der Wu,et al.  A Vectorization-Optimization-Method-Based Type-2 Fuzzy Neural Network for Noisy Data Classification , 2013, IEEE Transactions on Fuzzy Systems.

[22]  Roberto Solis-Oba,et al.  Reducing the Size of NFAs by Using Equivalences and Preorders , 2005, CPM.

[23]  Cristian S. Calude,et al.  Finite nondeterministic automata: Simulation and minimality , 2000, Theor. Comput. Sci..

[24]  Feng Lin,et al.  Modeling and control of fuzzy discrete event systems , 2002, IEEE Trans. Syst. Man Cybern. Part B.

[25]  Lucian Ilie,et al.  Reducing NFAs by invariant equivalences , 2003, Theor. Comput. Sci..

[26]  Madan M. Gupta,et al.  Fuzzy automata and decision processes , 1977 .

[27]  J. F. Baldwin,et al.  Fuzzy Switching and Automata Theory and Applications , 1980 .

[28]  N. C. Basak,et al.  On quotient machines of a fuzzy automaton and the minimal machine , 2002, Fuzzy Sets Syst..

[29]  Lucian Ilie,et al.  Follow automata , 2003, Inf. Comput..

[30]  Daowen Qiu,et al.  Characterizations of fuzzy finite automata , 2004, Fuzzy Sets Syst..

[31]  Jozef Gruska,et al.  Multi-letter quantum finite automata: decidability of the equivalence and minimization of states , 2011, Acta Informatica.

[32]  L. Peeva,et al.  Equivalence, Reduction and Minimization of Finite Automata over Semirings , 1991, Theor. Comput. Sci..

[33]  Lucian Ilie,et al.  Algorithms for Computing Small NFAs , 2002, MFCS.

[34]  Daowen Qiu Automata theory based on complete residuated lattice-valued logic , 2007, Science in China Series : Information Sciences.

[35]  Wei Cheng,et al.  Minimization algorithm of fuzzy finite automata , 2004, Fuzzy Sets Syst..

[36]  Qiu Daowen,et al.  Automata theory based on complete residuated lattice-valued logic , 2001 .

[37]  Martin Kutrib,et al.  Descriptional and computational complexity of finite automata - A survey , 2011, Inf. Comput..

[38]  Lihua Wu,et al.  Automata theory based on complete residuated lattice-valued logic: Reduction and minimization , 2010, Fuzzy Sets Syst..

[39]  Eugene S. Santos,et al.  Maximin Automata , 1968, Inf. Control..

[40]  Jean-Marc Champarnaud,et al.  NFA reduction algorithms by means of regular inequalities , 2004, Theor. Comput. Sci..

[41]  J. Mordeson,et al.  Fuzzy Discrete Structures , 2000 .

[42]  John E. Hopcroft,et al.  An n log n algorithm for minimizing states in a finite automaton , 1971 .

[43]  Lucian Ilie,et al.  On NFA Reductions , 2004, Theory Is Forever.

[44]  W. Wee On generalizations of adaptive algorithms and application of the fuzzy sets concept to pattern classification , 1967 .

[45]  Karvel K. Thornber,et al.  Fuzzy finite-state automata can be deterministically encoded into recurrent neural networks , 1998, IEEE Trans. Fuzzy Syst..

[46]  King-Sun Fu,et al.  A Formulation of Fuzzy Automata and Its Application as a Model of Learning Systems , 1969, IEEE Trans. Syst. Sci. Cybern..

[47]  Yongming Li,et al.  Minimization of states in automata theory based on finite lattice-ordered monoids , 2007, Inf. Sci..

[48]  Rong-Jong Wai,et al.  Adaptive Moving-Target Tracking Control of a Vision-Based Mobile Robot via a Dynamic Petri Recurrent Fuzzy Neural Network , 2013, IEEE Transactions on Fuzzy Systems.

[49]  B. Melnikov Once more about the state-minimization of the nondeterministic finite automata , 2000 .

[50]  Boris Melnikov A NEW ALGORITHM OF THE STATE-MINIMIZATION FOR THE NONDETERMINISTIC FINITE AUTOMATA , 1999 .

[51]  Sheng Yu,et al.  Mergible states in large NFA , 2005, Theor. Comput. Sci..