The L(2, 1)-labeling on the skew and converse skew products of graphs

Abstract An L ( 2 , 1 ) -labeling of a graph G is a function f from the vertex set V ( G ) to the set of all nonnegative integers such that | f ( x ) − f ( y ) | ≥ 2 if d ( x , y ) = 1 and | f ( x ) − f ( y ) | ≥ 1 if d ( x , y ) = 2 , where d ( x , y ) denotes the distance between x and y in G . The L ( 2 , 1 ) -labeling number λ ( G ) of G is the smallest number k such that G has an L ( 2 , 1 ) -labeling with max { f ( v ) : v ∈ V ( G ) } = k . Griggs and Yeh conjecture that λ ( G ) ≤ Δ 2 for any simple graph with maximum degree Δ ≥ 2 . This work considers the graph formed by the skew product and the converse skew product of two graphs. As corollaries, the new graph satisfies the above conjecture (with minor exceptions).

[1]  Jerrold R. Griggs,et al.  Labelling Graphs with a Condition at Distance 2 , 1992, SIAM J. Discret. Math..

[2]  LI Shuang-cheng,et al.  The L(d■,1 ■)-labeling of graphs , 2003 .

[3]  W. K. Hale Frequency assignment: Theory and applications , 1980, Proceedings of the IEEE.

[4]  Alan A. Bertossi,et al.  Mappings for Conflict-Free Access of Paths in Bidimensional Arrays, Circular Lists, and Complete Trees , 2002, J. Parallel Distributed Comput..

[5]  Denise Sakai,et al.  Labeling Chordal Graphs: Distance Two Condition , 1994 .

[6]  J. V. D. Heuvel,et al.  Graph labeling and radio channel assignment , 1998 .

[7]  John P. Georges,et al.  Labeling Products of Complete Graphs with a Condition at Distance Two , 2001, SIAM J. Discret. Math..

[8]  Yukio Shibata,et al.  Graph Products Based on the Distance in Graphs , 2000 .

[9]  Student Member,et al.  Graph Products Based on the Distance in Graphs ∗ , 2000 .

[10]  Jing-Ho Yan,et al.  On L(2, 1)-labelings of Cartesian products of paths and cycles , 2004, Discret. Math..

[11]  Roger K. Yeh A survey on labeling graphs with a condition at distance two , 2006, Discret. Math..

[12]  D. Gonçalves,et al.  On the L(p, 1)-labelling of graphs , 2008, Discret. Math..

[13]  John P. Georges,et al.  On the lambda-Number of Qn and Related Graphs , 1995, SIAM J. Discret. Math..

[14]  Fred S. Roberts,et al.  T-colorings of graphs: recent results and open problems , 1991, Discret. Math..

[15]  Pranava K. Jha,et al.  On L(2, 1)-labeling of the Cartesian product of a cycle and a path , 2000, Ars Comb..

[16]  G. Chang,et al.  Labeling graphs with a condition at distance two , 2005 .

[17]  Daphne Der-Fen Liu Sizes of Graphs with Fixed Orders and Spans for Circular-Distance-Two Labelings , 2003, Ars Comb..

[18]  John P. Georges,et al.  Relating path coverings to vertex labellings with a condition at distance two , 1994, Discret. Math..

[19]  Zhendong Shao,et al.  The L(2,1)-labeling and operations of graphs , 2005, IEEE Transactions on Circuits and Systems I: Regular Papers.

[20]  Liu Jia-zhuang The L(2,1)-labeling Problem on Several Classes of Graphs , 2004 .

[21]  Jan van Leeuwen,et al.  Approximations for λ-Colorings of Graphs 201 , 2004 .

[22]  Daphne Der-Fen Liu,et al.  On L(d, 1)-labelings of graphs , 2000, Discret. Math..

[23]  Gerard J. Chang,et al.  The L(2, 1)-Labeling Problem on Graphs , 1996, SIAM J. Discret. Math..

[24]  Tiziana Calamoneri,et al.  The L(h, k)-Labelling Problem: A Survey and Annotated Bibliography , 2006, Comput. J..

[25]  Shao Zhen-dong The L(3,2,1)-labeling problem on graphs , 2004 .

[26]  Gerard J. Chang,et al.  Distance-two labelings of graphs , 2003, Eur. J. Comb..

[27]  Daniel Král,et al.  A Theorem about the Channel Assignment Problem , 2003, SIAM J. Discret. Math..