The family of Caenorhabditis elegans tyrosine kinase receptors: similarities and differences with mammalian receptors.

Transmembrane receptors with tyrosine kinase activity (RTK) constitute a superfamily of proteins present in all metazoans that is associated with the control and regulation of cellular processes. They have been the focus of numerous studies and are a good subject for comparative analyses of multigene families in different species aimed at understanding metazoan evolution. The sequence of the genome of the nematode worm Caenorhabditis elegans is available. This offers a good opportunity to study the superfamily of nematode RTKs in its entirety and to compare it with its mammalian counterpart. We show that the C. elegans RTKs constitute various groups with different phylogenetic relationships with mammalian RTKs. A group of four RTKs show structural similarity with the three mammalian receptors for the vascular endothelial growth factors. Another group comprises RTKs with a short extracellular region, a feature not known in mammals; the genes encoding these RTKs are clustered on chromosome II with other gene families, including genes encoding chitinase-like proteins. Most of the C. elegans RTKs have no direct orthologous relationship with any mammalian RTK, providing an illustration of the importance of the separate evolution of the different phyla.

[1]  A. Sluder,et al.  The nuclear receptor superfamily has undergone extensive proliferation and diversification in nematodes. , 1999, Genome research.

[2]  K. Alitalo,et al.  Endothelial receptor tyrosine kinases involved in angiogenesis , 1995, The Journal of cell biology.

[3]  B. Henrissat Weak sequence homologies among chitinases detected by clustering analysis. , 1990, Protein sequences & data analysis.

[4]  François Coulier,et al.  Of Worms and Men: An Evolutionary Perspective on the Fibroblast Growth Factor (FGF) and FGF Receptor Families , 1997, Journal of Molecular Evolution.

[5]  V. Chapman,et al.  Close physical linkage of the FLT1 and FLT3 genes on chromosome 13 in man and chromosome 5 in mouse. , 1993, Oncogene.

[6]  Dr. Susumu Ohno Evolution by Gene Duplication , 1970, Springer Berlin Heidelberg.

[7]  Jordi Garcia-Fernàndez,et al.  Archetypal organization of the amphioxus Hox gene cluster , 1994, Nature.

[8]  L. Joly,et al.  Zebrafish hox genes: genomic organization and modified colinear expression patterns in the trunk. , 1998, Development.

[9]  B. Henrissat,et al.  Structures and mechanisms of glycosyl hydrolases. , 1995, Structure.

[10]  A Levitt,et al.  Molecular and genomic organization of clusters of repetitive DNA sequences in Caenorhabditis elegans. , 1992, Journal of molecular biology.

[11]  J. Thompson,et al.  CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. , 1994, Nucleic acids research.

[12]  J. Felsenstein CONFIDENCE LIMITS ON PHYLOGENIES: AN APPROACH USING THE BOOTSTRAP , 1985, Evolution; international journal of organic evolution.

[13]  D. Birnbaum,et al.  let-756, a C. elegans fgf essential for worm development , 1999, Oncogene.

[14]  R. Burdine,et al.  egl-17 encodes an invertebrate fibroblast growth factor family member required specifically for sex myoblast migration in Caenorhabditis elegans. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[15]  R. Plasterk,et al.  The complete family of genes encoding G proteins of Caenorhabditis elegans , 1999, Nature Genetics.

[16]  Y L Wang,et al.  Zebrafish hox clusters and vertebrate genome evolution. , 1998, Science.

[17]  G. Ruvkun,et al.  The taxonomy of developmental control in Caenorhabditis elegans. , 1998, Science.

[18]  P. Holland Vertebrate evolution: Something fishy about Hox genes , 1997, Current Biology.

[19]  D. Birnbaum,et al.  Hematopoietic receptors of class III receptor-type tyrosine kinases. , 1993, Critical reviews in oncogenesis.

[20]  H. Robertson Two large families of chemoreceptor genes in the nematodes Caenorhabditis elegans and Caenorhabditis briggsae reveal extensive gene duplication, diversification, movement, and intron loss. , 1998, Genome research.

[21]  D. Birnbaum,et al.  Ancient large-scale genome duplications: phylogenetic and linkage analyses shed light on chordate genome evolution. , 1998, Molecular biology and evolution.

[22]  E. Eichler,et al.  Complex beta-satellite repeat structures and the expansion of the zinc finger gene cluster in 19p12. , 1998, Genome research.

[23]  C Kappen,et al.  Duplication of large genomic regions during the evolution of vertebrate homeobox genes. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[24]  G. Wagner,et al.  Phylogenetic reconstruction of vertebrate Hox cluster duplications. , 1997, Molecular biology and evolution.

[25]  W. P. Wahls,et al.  Hypervariable minisatellite DNA is a hotspot for homologous recombination in human cells , 1990, Cell.

[26]  J. Finnerty,et al.  The evolution of the Hox cluster: insights from outgroups. , 1998, Current opinion in genetics & development.

[27]  Leo X. Liu,et al.  Large-scale taxonomic profiling of eukaryotic model organisms: a comparison of orthologous proteins encoded by the human, fly, nematode, and yeast genomes. , 1998, Genome research.

[28]  Joseph Schlessinger,et al.  Signal transduction by receptors with tyrosine kinase activity , 1990, Cell.

[29]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[30]  F H Ruddle,et al.  Vertebrate genome evolution--the decade ahead. , 1997, Genomics.

[31]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[32]  B. Henrissat,et al.  Families, superfamilies and subfamilies of glycosyl hydrolases. , 1995, The Biochemical journal.

[33]  J. Spring,et al.  Vertebrate evolution by interspecific hybridisation – are we polyploid? , 1997, FEBS letters.

[34]  A. Sidow,et al.  Gene duplications and the origins of vertebrate development. , 1994, Development (Cambridge, England). Supplement.

[35]  D. Birnbaum,et al.  Les récepteurs pour les facteurs de la famille du VEGF , 1997 .

[36]  P Bork,et al.  The immunoglobulin fold. Structural classification, sequence patterns and common core. , 1994, Journal of molecular biology.

[37]  Margaret R. Thomson,et al.  Vertebrate genome evolution and the zebrafish gene map , 1998, Nature Genetics.

[38]  N. Saitou,et al.  The neighbor-joining method: a new method for reconstructing phylogenetic trees. , 1987, Molecular biology and evolution.

[39]  A. Sidow Gen(om)e duplications in the evolution of early vertebrates. , 1996, Current opinion in genetics & development.

[40]  L. Lundin,et al.  Evolution of the vertebrate genome as reflected in paralogous chromosomal regions in man and the house mouse. , 1993, Genomics.

[41]  Roderic D. M. Page,et al.  TreeView: an application to display phylogenetic trees on personal computers , 1996, Comput. Appl. Biosci..

[42]  Sydney Brenner,et al.  Molecular analysis of the unc-54 myosin heavy-chain gene of Caenorhabditis elegans , 1981, Nature.

[43]  Paul W. Sternberg,et al.  The gene lin-3 encodes an inductive signal for vulval development in C. elegans , 1992, Nature.

[44]  Byrappa Venkatesh,et al.  Organization of the Fugu rubripes Hox clusters: evidence for continuing evolution of vertebrate Hox complexes , 1997, Nature Genetics.

[45]  Joachim Wittbrodt,et al.  More genes in fish , 1998 .

[46]  I. Greenwald,et al.  Two novel transmembrane protein tyrosine kinases expressed during Caenorhabditis elegans hypodermal development , 1993, Molecular and cellular biology.

[47]  P. Holland,et al.  Hox genes and chordate evolution. , 1996, Developmental biology.