Edge-Removal and Non-Crossing Configurations in Geometric Graphs

A geometric graph is a graph G = (V, E) drawn in the plane, such that V is a point set in general position and E is a set of straight-line segments whose endpoints belong to V. We study the following extremal problem for geometric graphs: How many arbitrary edges can be removed from a complete geometric graph with n vertices such that the remaining graph still contains a certain non-crossing subgraph. The non-crossing subgraphs that we consider are perfect matchings, subtrees of a given size, and triangulations. In each case, we obtain tight bounds on the maximum number of removable edges.

[1]  János Pach,et al.  Ramsey-type results for geometric graphs , 1996, SCG '96.

[2]  Marc Noy,et al.  Graphs of Non-Crossing Perfect Matchings , 2002, Graphs Comb..

[3]  F. Harary THE MAXIMUM CONNECTIVITY OF A GRAPH. , 1962, Proceedings of the National Academy of Sciences of the United States of America.

[4]  Vladimir I. Benediktovich Plane subgraphs in geometric complement of 2-factor and complete bipartite geometric graph , 2006, Electron. Notes Discret. Math..

[5]  Marc Noy,et al.  Packing trees into planar graphs , 2002, J. Graph Theory.

[6]  Wayne Goddard,et al.  Forcing Disjoint Segments in the Plane , 1996, Eur. J. Comb..

[7]  Gyula Károlyi,et al.  Ramsey-Type Results for Geometric Graphs, I , 1997, Discret. Comput. Geom..

[8]  Errol L. Lloyd On triangulations of a set of points in the plane , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).

[9]  Leonard F. Klosinski,et al.  The William Lowell Putnam mathematical competition: problems and solutions: 1965-1984 , 1985 .

[10]  Stefan Felsner,et al.  Geometric Graphs and Arrangements - Some Chapters from Combinatorial Geometry , 2004, Advanced lectures in mathematics.

[11]  Yakov Shimeon Kupitz On Pairs of Disjoint Segments in Convex Position in The Plane , 1984 .

[12]  Jakub Černý,et al.  Geometric Graphs with No Three Disjoint Edges , 2005, Discret. Comput. Geom..

[13]  Micha A. Perles,et al.  Extremal theory for convex matchings in convex geometric graphs , 1996, Discret. Comput. Geom..

[14]  János Pach,et al.  Ramsey-Type Results for Geometric Graphs II , 1997, Symposium on Computational Geometry.

[15]  Géza Tóth,et al.  Geometric Graphs with Few Disjoint Edges , 1998, SCG '98.

[16]  Noga Alon,et al.  Disjoint edges in geometric graphs , 1989, Discret. Comput. Geom..

[17]  Zdenek Dvorak,et al.  Noncrossing Hamiltonian paths in geometric graphs , 2007, Discret. Appl. Math..

[18]  Géza Tóth,et al.  Note on Geometric Graphs , 2000, J. Comb. Theory, Ser. A.

[19]  Pavel Valtr,et al.  A Turán-type Extremal Theory of Convex Geometric Graphs , 2003 .

[20]  Jorge Urrutia,et al.  On the length of longest alternating paths for multicoloured point sets in convex position , 2006, Discret. Math..

[21]  B. Aronov,et al.  Discrete and computational geometry : the Goodman-Pollack Festschrift , 2003 .

[22]  Marc Noy,et al.  Packing trees into planar graphs , 2002 .

[23]  János Pach,et al.  Some geometric applications of Dilworth’s theorem , 1994, Discret. Comput. Geom..

[24]  David E. R. Sitton,et al.  MAXIMUM MATCHINGS IN COMPLETE MULTIPARTITE GRAPHS , 1996 .

[25]  János Pach Geometric Graph Theory , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..

[26]  P. Erdös On Sets of Distances of n Points , 1946 .