Structural and functional diversity of a dense sample of retinal ganglion cells

Most digital brain atlases have macroscopic resolution and are confined to a single imaging modality. Here we present a new kind of resource that combines dense maps of anatomy and physiology at cellular resolution. The resource encompasses almost 400 ganglion cells from a single patch of mouse retina, and a digital “museum” provides a 3D interactive view of each cell’s anatomy as well as graphs of its visual responses. To demonstrate the utility of the resource, we use it to divide the inner plexiform layer of the retina into four sublaminae defined by a purely anatomical principle of arbor segregation. We also test the hypothesis that the aggregate neurite density of a ganglion cell type should be approximately uniform (“density conservation”). Finally, we find that ganglion cells arborizing in the inner marginal sublamina of the inner plexiform layer exhibit significantly more sustained visual responses on average.

[1]  Kevin L. Briggman,et al.  Wiring specificity in the direction-selectivity circuit of the retina , 2011, Nature.

[2]  D. Chklovskii,et al.  Neurogeometry and potential synaptic connectivity , 2005, Trends in Neurosciences.

[3]  H. Sebastian Seung,et al.  Image Segmentation by Size-Dependent Single Linkage Clustering of a Watershed Basin Graph , 2015, ArXiv.

[4]  Srinivas C. Turaga,et al.  Space-time wiring specificity supports direction selectivity in the retina , 2014, Nature.

[5]  Bart G Borghuis,et al.  Form and Function of the M4 Cell, an Intrinsically Photosensitive Retinal Ganglion Cell Type Contributing to Geniculocortical Vision , 2012, The Journal of Neuroscience.

[6]  G. Schwartz,et al.  Circuit Mechanisms of a Retinal Ganglion Cell with Stimulus-Dependent Response Latency and Activation Beyond Its Dendrites , 2017, Current Biology.

[7]  Arthur W. Wetzel,et al.  Network anatomy and in vivo physiology of visual cortical neurons , 2011, Nature.

[8]  B. Roska,et al.  Genetic address book for retinal cell types , 2009, Nature Neuroscience.

[9]  S. R. Y. Cajal La rétine des vertébrés , 1892 .

[10]  M. A. Raven,et al.  Spatial patterning of cholinergic amacrine cells in the mouse retina , 2008, The Journal of comparative neurology.

[11]  M. Bethge,et al.  Inhibition decorrelates visual feature representations in the inner retina , 2017, Nature.

[12]  J. Sanes,et al.  The types of retinal ganglion cells: current status and implications for neuronal classification. , 2015, Annual review of neuroscience.

[13]  Ji-Jie Pang,et al.  Rod, M‐cone and M/S‐cone inputs to hyperpolarizing bipolar cells in the mouse retina , 2012, The Journal of physiology.

[14]  Alan C. Evans,et al.  BigBrain: An Ultrahigh-Resolution 3D Human Brain Model , 2013, Science.

[15]  G. Schwartz,et al.  Cardinal Orientation Selectivity Is Represented by Two Distinct Ganglion Cell Types in Mouse Retina , 2016, The Journal of Neuroscience.

[16]  J. Nathans,et al.  Quantitative analysis of neuronal morphologies in the mouse retina visualized by using a genetically directed reporter , 2004, The Journal of comparative neurology.

[17]  Sen Song,et al.  A genetic and computational approach to structurally classify neuronal types , 2014, Nature Communications.

[18]  R. Stacy,et al.  Developmental relationship between cholinergic amacrine cell processes and ganglion cell dendrites of the mouse retina , 2003, The Journal of comparative neurology.

[19]  Matthias Bethge,et al.  The functional diversity of retinal ganglion cells in the mouse , 2015, Nature.

[20]  G. Ascoli,et al.  NeuroMorpho.Org: A Central Resource for Neuronal Morphologies , 2007, The Journal of Neuroscience.

[21]  G. Awatramani,et al.  Origin of Transient and Sustained Responses in Ganglion Cells of the Retina , 2000, The Journal of Neuroscience.

[22]  Sergei Vassilvitskii,et al.  k-means++: the advantages of careful seeding , 2007, SODA '07.

[23]  W. Denk,et al.  Serial Block-Face Scanning Electron Microscopy to Reconstruct Three-Dimensional Tissue Nanostructure , 2004, PLoS biology.

[24]  Allan R. Jones,et al.  Genome-wide atlas of gene expression in the adult mouse brain , 2007, Nature.

[25]  D. Berson,et al.  Phototransduction by Retinal Ganglion Cells That Set the Circadian Clock , 2002, Science.

[26]  H. Wässle,et al.  The mosaic of nerve cells in the mammalian retina , 1978, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[27]  B. Völgyi,et al.  Tracer coupling patterns of the ganglion cell subtypes in the mouse retina , 2009, The Journal of comparative neurology.

[28]  Arthur W. Toga,et al.  Neural Networks of the Mouse Neocortex , 2014, Cell.

[29]  Masayuki Nakajima,et al.  TEASAR: tree-structure extraction algorithm for accurate and robust skeletons , 2000, Proceedings the Eighth Pacific Conference on Computer Graphics and Applications.

[30]  R. Masland Neuronal cell types , 2004, Current Biology.

[31]  J. Marvin,et al.  Two-Photon Imaging of Nonlinear Glutamate Release Dynamics at Bipolar Cell Synapses in the Mouse Retina , 2013, The Journal of Neuroscience.

[32]  Alexandro D. Ramirez,et al.  Electron Microscopic Reconstruction of Functionally Identified Cells in a Neural Integrator , 2017, Current Biology.

[33]  K. T. S. Brazier,et al.  Confidence intervals from the Rayleigh test , 1994 .

[34]  D. Dacey,et al.  Monoamine‐accumulating ganglion cell type of the cat's retina , 1989, The Journal of comparative neurology.

[35]  E. V. Famiglietti,et al.  Structural basis for ON-and OFF-center responses in retinal ganglion cells. , 1976, Science.

[36]  Thomas de Quincey [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.

[37]  M. Bethge,et al.  Spikes in Mammalian Bipolar Cells Support Temporal Layering of the Inner Retina , 2013, Current Biology.

[38]  Dennis C Harrison Form and function , 2012, Canadian Medical Association Journal.

[39]  Onkar S Dhande,et al.  Genetic Dissection of Retinal Inputs to Brainstem Nuclei Controlling Image Stabilization , 2013, The Journal of Neuroscience.

[40]  B. Boycott,et al.  Dendritic territories of cat retinal ganglion cells , 1981, Nature.

[41]  H B Barlow,et al.  Direction-Selective Units in Rabbit Retina: Distribution of Preferred Directions , 1967, Science.

[42]  F. Werblin,et al.  Vertical interactions across ten parallel, stacked representations in the mammalian retina , 2001, Nature.

[43]  Thomas Euler,et al.  Bulk electroporation and population calcium imaging in the adult mammalian retina. , 2011, Journal of neurophysiology.

[44]  Ben A. Barres,et al.  Transgenic Mice Reveal Unexpected Diversity of On-Off Direction-Selective Retinal Ganglion Cell Subtypes and Brain Structures Involved in Motion Processing , 2011, The Journal of Neuroscience.

[45]  W. Grueber,et al.  Self-avoidance and tiling: Mechanisms of dendrite and axon spacing. , 2010, Cold Spring Harbor perspectives in biology.

[46]  Brett J. Graham,et al.  Anatomy and function of an excitatory network in the visual cortex , 2016, Nature.

[47]  Markus Meister,et al.  Four alpha ganglion cell types in mouse retina: Function, structure, and molecular signatures , 2017, PloS one.

[48]  John A Gemmer,et al.  A retinal code for motion along the gravitational and body axes , 2017, Nature.

[49]  D. Berson,et al.  Morphology and mosaics of melanopsin‐expressing retinal ganglion cell types in mice , 2010, The Journal of comparative neurology.

[50]  A. Huberman,et al.  Architecture and Activity-Mediated Refinement of Axonal Projections from a Mosaic of Genetically Identified Retinal Ganglion Cells , 2008, Neuron.

[51]  B. Boycott,et al.  Morphology and mosaic of on- and off-beta cells in the cat retina and some functional considerations , 1981, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[52]  M. A. Raven,et al.  Dendritic spread and functional coverage of starburst amacrine cells , 2007, The Journal of comparative neurology.

[53]  J. B. Demb,et al.  Disinhibition Combines with Excitation to Extend the Operating Range of the OFF Visual Pathway in Daylight , 2008, The Journal of Neuroscience.

[54]  L. Chalupa,et al.  Morphological properties of mouse retinal ganglion cells , 2006, Neuroscience.

[55]  W. Levick,et al.  Sustained and transient neurones in the cat's retina and lateral geniculate nucleus , 1971, The Journal of physiology.

[56]  Heinz Wässle,et al.  Parallel processing in the mammalian retina , 2004, Nature Reviews Neuroscience.

[57]  Adam Bleckert,et al.  Visual Space Is Represented by Nonmatching Topographies of Distinct Mouse Retinal Ganglion Cell Types , 2014, Current Biology.

[58]  J. Kong,et al.  Diversity of ganglion cells in the mouse retina: Unsupervised morphological classification and its limits , 2005, The Journal of comparative neurology.

[59]  A. Wanner,et al.  Dense EM-based reconstruction of the interglomerular projectome in the zebrafish olfactory bulb , 2016, Nature Neuroscience.

[60]  H. Sebastian Seung,et al.  Analogous Convergence of Sustained and Transient Inputs in Parallel On and Off Pathways for Retinal Motion Computation , 2016, Cell reports.

[61]  David H. Hall,et al.  C. elegans Atlas , 2008 .

[62]  F. Amthor,et al.  Dendritic architecture of ON-OFF direction-selective ganglion cells in the rabbit retina , 1993, Vision Research.

[63]  Calvin R. Maurer,et al.  A Linear Time Algorithm for Computing Exact Euclidean Distance Transforms of Binary Images in Arbitrary Dimensions , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[64]  D. Berson,et al.  Distribution and coverage of beta cells in the cat retina. , 1996, The Journal of comparative neurology.

[65]  Charles P. Ratliff,et al.  Design of a Neuronal Array , 2008, The Journal of Neuroscience.

[66]  Srinivas C. Turaga,et al.  Connectomic reconstruction of the inner plexiform layer in the mouse retina , 2013, Nature.

[67]  J. Sanes,et al.  The most numerous ganglion cell type of the mouse retina is a selective feature detector , 2012, Proceedings of the National Academy of Sciences.

[68]  H. Barlow,et al.  The mechanism of directionally selective units in rabbit's retina. , 1965, The Journal of physiology.

[69]  Ji-Jie Pang,et al.  Light-Evoked Excitatory and Inhibitory Synaptic Inputs to ON and OFF α Ganglion Cells in the Mouse Retina , 2003, The Journal of Neuroscience.

[70]  Masahito Yamagata,et al.  Two Pairs of ON and OFF Retinal Ganglion Cells Are Defined by Intersectional Patterns of Transcription Factor Expression. , 2016, Cell reports.

[71]  William N. Grimes,et al.  The Synaptic and Circuit Mechanisms Underlying a Change in Spatial Encoding in the Retina , 2014, Neuron.

[72]  G. Schwartz,et al.  Three Small-Receptive-Field Ganglion Cells in the Mouse Retina Are Distinctly Tuned to Size, Speed, and Object Motion , 2017, The Journal of Neuroscience.

[73]  J. Sanes,et al.  Molecular identification of a retinal cell type that responds to upward motion , 2008, Nature.