Structural transition of bovine plasma albumin in the alkaline region--the N-B transition.

Bovine plasma albumin (BPA) has approximately one SH group (Cys-34) which catalyzes the intramolecular SH, S-S exchange reaction in the alkaline region at low ionic strength, resulting in the formation of the aged form. So, the N-B transition at ionic strength above 0.20 and below 0.10 was studied using BPA and iodoacetamide-blocked BPA (IA-BPA), respectively. (1) pH profiles of [theta]262 and [theta]268 of BPA in 0.20 M KCl showed the characteristic changes in the pH region 7.0-9.0, corresponding to the N-B transition. On going from pH 7.0 to 9.0 in 0.10 M KCl or NaCl, IA-BPA did not show significant changes in rotational relaxation times of tryptophyl fluorophors, CD-resolved secondary structures, spin-echo 1H-n.m.r. spectra and cross-relaxation times (TIS) between irradiated and observed protein protons, which might reflect the rigidity of the domains and/or subdomains. On the other hand, rotational relaxation times of 1-anilino-8-naphthalenesulfonate-IA-BPA complex (IA-BPA-ANS0.9, molar ratio of ANS to IA-BPA = 0.9/1) showed significant decreases from 131 to 114 ns on going from the N- to the B-forms in 0.10 M KCl. The above results and reported experimental evidence might indicate that on going from the N- to the B-forms in 0.10 M KCl or NaCl, the mutual movement of subdomains, connected with a flexible hinge region (Brown & Shockley (1982)) might increase without loss in the helicity and the rigidity of subdomains. (2) The N-B transition of IA-BPA in the absence of salt was quite different from those in 0.10 M KCl or NaCl. Decreases in the helicity and the intramolecular rigidity, as monitored by TIS-measurements, were observed on going from the N- to the B-forms.

[1]  S. Era,et al.  Water structure in modified bovine plasma albumin (BPA) gel and bovine mercaptalbumin solution. 1H-n.m.r. studies. , 2009, International journal of peptide and protein research.

[2]  L. Janssen,et al.  A proton nuclear magnetic resonance study of human serum albumin in the neutral pH region. , 1986, Biochimica et biophysica acta.

[3]  S. Era,et al.  Circular dichroic and fluorometric studies on the acid-induced isomerization of bovine plasma albumin--1 -anilino-8-naphthalenesulfonate complex. , 2009, International journal of peptide and protein research.

[4]  S. Era,et al.  Ion-exchange high-performance liquid chromatographic studies on sulphydryl-catalysed structural alterations of bovine mercaptalbumin. , 1985, Journal of chromatography.

[5]  H. Ashida,et al.  CD-resolved secondary structure of bovine plasma albumin in acid-induced isomerization. , 2009, International journal of peptide and protein research.

[6]  K. Akasaka Spin diffusion and the dynamic structure of a protein. Streptomyces subtilisin inhibitor , 1983 .

[7]  S. Era,et al.  Circular dichroic and fluoropolarimetric studies on tryptophyl residues in acid-induced isomerization of bovine plasma albumin. , 2009, International journal of peptide and protein research.

[8]  K. Akasaka Longitudinal relaxation of protons under cross saturation and spin diffusion , 1981 .

[9]  J. Jacobsen,et al.  Kinetics of neutral transition of human serum albumin. , 1981, Biochimica et biophysica acta.

[10]  J. Wilting,et al.  Human serum albumin as an allosteric two-state protein. Evidence from effects of calcium and warfarin on proton binding behaviour. , 1981, Biochimica et biophysica acta.

[11]  A. O. Pedersen,et al.  Reactivity of the thiol group in human and bovine albumin at pH 3--9, as measured by exchange with 2,2'-dithiodipyridine. , 2005, European journal of biochemistry.

[12]  J. Jacobsen,et al.  Thermodynamics and kinetics of the neutral transition of human serum albumin, monitored by the spectral change of bound bilirubin. , 1980, Biochimica et biophysica acta.

[13]  J. Perrin,et al.  Conformational changes in human serum albumin around the neutral pH from circular dichroic measurements. , 1979, Biochimica et biophysica acta.

[14]  L. Kaplan,et al.  Spin-label studies of the sulfhydryl environment in bovine plasma albumin. 1. The N--F transition and acid expansion. , 1978, Biochemistry.

[15]  L. Kaplan,et al.  Spin-label studies on the sulfhydryl environment in bovine plasma albumin. 2. The neutral transition and the A isomer. , 1978, Biochemistry.

[16]  R. McMenamy ALBUMIN BINDING SITES , 1977 .

[17]  K. Wallevik Spontaneous in vivo isomerization of bovine serum albumin as a determinant of its normal catabolism. , 1976, The Journal of clinical investigation.

[18]  K. Wallevik SS-interchanged and oxidized isomers of bovine serum albumin separated by isoelectric focusing. , 1976, Biochimica et biophysica acta.

[19]  J. F. Foster,et al.  Conformational properties of bovine plasma albumin with a cleaved internal peptide bond. , 1975, Biochemistry.

[20]  T. Peters,et al.  Fragments of bovine serum albumin produced by limited proteolysis. Conformation and ligand binding. , 1975, Biochemistry.

[21]  M. Sogami,et al.  Fluorescence polarization studies on the conformational transition of bovine plasma albumin in acidic solutions. , 1975, Biochimica et biophysica acta.

[22]  B. Harmsen,et al.  Conformational studies on large fragments of bovine serum albumin in relation to the structure of the molecule. , 2009, International journal of peptide and protein research.

[23]  J. F. Foster,et al.  The neutral transition and the environment of the sulfhydryl side chain of bovine plasma albumin. , 1974, Biochemistry.

[24]  J. F. Foster,et al.  Further studies of the sulfhydryl-catalyzed isomerization of bovine mercaptalbumin. , 1973, Biochemistry.

[25]  M. Sogami,et al.  Fluorimetric studies on the structural transition of bovine plasma albumin in acidic solutions. , 1973, Biochimica et biophysica acta.

[26]  K. Wallevik Reversible denaturation of human serum albumin by pH, temperature, and guanidine hydrochloride followed by optical rotation. , 1973, The Journal of biological chemistry.

[27]  K. Gambhir,et al.  Location of the indole binding site in human serum albumin. Characterization of major cyanogen bromide fragments with respect to affinity labeling positions. , 1973, The Journal of biological chemistry.

[28]  T. Laurent,et al.  The rotational diffusion of albumin in solutions of connective-tissue polysaccharides. , 1973, European journal of biochemistry.

[29]  Noel Jk,et al.  Bovine Mercaptalbumin and Non-mercaptalbumin Monomers INTERCONVERSIONS AND STRUCTURAL DIFFERENCES , 1972 .

[30]  Y H Chen,et al.  Determination of the secondary structures of proteins by circular dichroism and optical rotatory dispersion. , 1972, Biochemistry.

[31]  A. Hvidt,et al.  Conformational changes in human serum albumin as revealed by hydrogen-deuterium exchange studies. , 1972, The Journal of biological chemistry.

[32]  A. Jonas,et al.  Strong binding of hydrophobic anions by bovine serum albumin peptides covalently linked to lysozyme. , 1971, Biochemistry.

[33]  J. F. Foster,et al.  A reversible sulfhydryl-catalyzed structural alteraction of bovine mercaptalbumin. , 1971, Biochemistry.

[34]  E. Benson,et al.  Hydrogen exchange in proteins. Equilibrium and kinetic isotope effects in bovine plasma albumin studied with tritium and deuterium. , 1971, Biochimica et biophysica acta.

[35]  P. McPhie The nature of the acid transition of ribonuclease A. , 1971, The Journal of biological chemistry.

[36]  C. J. Halfman,et al.  Influence of pH and electrolyte on the fluorescence of bovine serum albumin. , 1971, Biochimica et biophysica acta.

[37]  J. F. Rodrigues de Miranda,et al.  pK change of imidazole groups in bovine serum albumin due to the conformational change at neutral pH. , 1971, Biochemistry.

[38]  A. Jonas,et al.  Presence of arginine residues at the strong, hydrophobic anion binding sites of bovine serum albumin. , 1971, Biochemistry.

[39]  A. Jonas,et al.  Limited digestion of citraconylated bovine serum albumin with alpha-chymotrypsin. , 1970, Biochemistry.

[40]  A. Jonas,et al.  Partial modification of bovine serum albumin with dicarboxylic anhydrides. Physical properties of the modified species. , 1970, Biochemistry.

[41]  E. Benson,et al.  On the mechanisms of pH-dependent hydrogen exchange of bovine plasma albumin in the range of pH 5 to 8.5. , 1970, The Journal of biological chemistry.

[42]  P. Johnson,et al.  The importance of life-time changes in fluorescence depolarization. , 1969, The Biochemical journal.

[43]  J. F. Foster,et al.  Subtilisin cleavage of bovine plasma albumin. Reversible association of the two primary fragments and their relation to the structure of the parent protein. , 1969, Biochemistry.

[44]  J. Reynolds,et al.  Perturbation of proton and detergent binding sites in bovine serum albumin by acetimidation. , 1969, Biochemistry.

[45]  J. F. Foster,et al.  The microheterogeneity of plasma albumins. V. Permutations in disulfide pairings as a probable source of microheterogeneity in bovine albumin. , 1969, Biochemistry.

[46]  J. F. Foster,et al.  Isomerization reactions of charcoal-defatted bovine plasma albumin. The N-F transition and acid expansion. , 1968, Biochemistry.

[47]  E. Blout,et al.  The optical activity of the disulfide bond in L-cystine and some derivatives of L-cystine. , 1968, Journal of the American Chemical Society.

[48]  H. Edelhoch,et al.  The formation of diiodotyrosine in iodinated human serum albumin. , 1967, The Journal of biological chemistry.

[49]  R. F. Chen,et al.  Removal of fatty acids from serum albumin by charcoal treatment. , 1967, The Journal of biological chemistry.

[50]  R. F. Chen Fluorescence spectra of human serum albumin in the pH region of the N-F transition. , 1966, Biochimica et biophysica acta.

[51]  Raymond F. Chen,et al.  Fluorescence Polarization: Measurement with Ultraviolet-Polarizing Filters in a Spectrophotofluorometer , 1965, Science.

[52]  D. Wetlaufer,et al.  INDUCTION OF REVERSIBLE STRUCTURAL CHANGES IN PROTEINS BY NONPOLAR SUBSTANCES. , 1964, The Journal of biological chemistry.

[53]  F. Long,et al.  Solvent Deuterium Isotope Effects on Acid-Base Equilibria , 1964 .

[54]  R. Lumry,et al.  DEUTERIUM-HYDROGEN EXCHANGE ANALYSIS OF PH-DEPENDENT TRANSITIONS IN BOVINE PLASMA ALBUMIN. , 1964, The Journal of biological chemistry.

[55]  R. McMenamy ASSOCIATION OF INDOLE ANALOGUES TO DEFATTED HUMAN SERUM ALBUMIN. , 1963, Archives of biochemistry and biophysics.

[56]  J. F. Foster,et al.  A structural transformation in bovine and human plasma albumins in alkaline solution as revealed by rotatory dispersion studies. , 1963, The Journal of biological chemistry.

[57]  H. Edelhoch,et al.  The ultraviolet fluorescent of proteins I. The influence of pH and temperature , 1963 .

[58]  H. Edelhoch,et al.  Fluorescent Protein Conjugates. , 1962 .

[59]  H. Edelhoch,et al.  Influence of pH and Urea on the Ultra-violet Fluorescence of Several Globular Proteins , 1961, Nature.

[60]  J. F. Foster,et al.  An Investigation of Bovine Plasma Albumin by Differential Ultraviolet Spectroscopy1 , 1959 .

[61]  E. Katchalski,et al.  The Availability of the Disulfide Bonds of Human and Bovine Serum Albumin and of Bovine γ-Globulin to Reduction by Thioglycolic Acid , 1957 .

[62]  G. Markus,et al.  Structural Effects of the Interaction of Human Serum Albumin with Sodium Decyl Sulfate1 , 1957 .

[63]  F. Karush Heterogeneity of the Binding Sites of Bovine Serum Albumin1 , 1950 .